Supplementary Information.

Structural Assessment of Anhydrous Sulfates with High Field ³³S Solid State NMR and First Principles Calculations.

Peter J. Pallister,^a Igor L. Moudrakovski,^{*b} Gary D. Enright,^c Ripmeester, J. A.^c

^a Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON,

Canada K1S 5B6

^b Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa,

Ontario, Canada K1N 6N5

^c National Research Council, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

* Author to whom correspondence is to be addressed E-mail: <u>igor.moudrakovski@gmail.ca</u>

Figure S1 A – stationary ³³S Hahn Echo spectrum of Na₂SO₄ at 21.1T with corresponding simulation accounting for both the EFG and CSA (A'). B - representative portion of the Na₂SO₄ unit cell demonstrating the calculated orientations for the principal components of the EFG and CSA tensors. The black lines are proper C₂ rotation axes present through sulfur. C – experimental 5 kHz MAS Bloch Decay ³³S spectrum of K₂SO₄ at 21.1T, C' – corresponding simulation. D – stationary QCPMG spectrum of K₂SO₄ at 21.1T, E - stationary ³³S Hahn Echo spectrum of K₂SO₄ at 21.1T with corresponding simulation accounting for both the EFG and CSA (E'). F - Representative portion of the K₂SO₄ unit cell showing the calculated orientations for the principal components of the EFG and CSA tensors. Sulfur, oxygen, and alkali metal are shown in yellow, red, and purple respectively. The mirror plane present through sulfur is shown in yellow.

Figure S2 ³³S SS-NMR spectra of α -MgSO₄ at 21.1T. A - experimental 5 kHz MAS Bloch Decay, A'- simulation of the MAS spectrum. B – stationary QCPMG spectrum. C – experimental stationary Hahn Echo spectrum, C' - simulation of the stationary spectrum accounting for both the EFG and CSA interactions. D - representative portion of the unit cell showing the calculated orientations for the principal components of the EFG and CSA tensors. Sulfur, oxygen, and alkali earth metal are shown in yellow, red, and green respectively. The two mirror planes present through sulfur are shown in yellow. The black line at the intersection of the planes is the proper C2 rotation axis through sulfur.

Figure S3 ³³S SS-NMR spectra (experimental and simulated) of β -MgSO₄. A,A' - 5 kHz DFS MAS Bloch Decay. B, B' - Static Hahn Echo. C - representative portion of the unit cell showing the calculated orientations for the principal components of the EFG and CSA tensors. Sulfur, oxygen, and alkali earth metal are shown in yellow, red, and green respectively. The mirror plane present through sulfur is shown in yellow.

Figure S4 ³³S SS-NMR spectra (experimental and simulated) of BaSO₄. A,A' 5 kHz DFS MAS Bloch Decay at 21.1 T. B - stationary QCPMG taken at 21.1 T. C, C' Static Hahn Echo taken at 21.1 T. D- representative portion of the unit cell showing the calculated orientations for the principal components of the EFG and CSA tensors. Sulfur, oxygen, and barium are shown in yellow, red, and green respectively. The mirror plane present through sulfur is shown in yellow.

Figure S5 ³³S spectraof $In_2(SO_4)_3$ at 21.1T. A - experimental 5.8 kHz RAPT-MAS Bloch Decay, A' - simulation. B – stationary QCPMG spectrum. C - stationary Hahn Echo, B'simulation of the stationary spectrum accounting for both the EFG and CSA interactions. D - Representative portion of the unit cell showing the calculated orientations for the principal components of the EFG and CSA tensors. Sulfur, oxygen, and indium are shown in yellow, red, and brown respectively.

Figure 6 Representative ³³S stationary spectra of sulfates obtained at 11.7 T ($v_0(^{33}S) = 38.4$ MHz). A - stationary Hahn Echo of (NH₄)₂SO₄, B - stationary Hahn Echo of Li₂SO₄, C - stationary QCPMG of K₂SO₄, D - stationary QCPMG of CaSO₄, E - stationary QCPMG of BaSO₄, F - stationary QCPMG of Al₂(SO₄)₃, G - stationary QCPMG of Ga₂(SO₄)₃, H - stationary Hahn Echo of Ga₂(SO₄)₃.

Figure 7 Representative ³³S stationary spectra of sulfates obtained at 9.4 T ($v_0(^{33}S) = 30.73$ MHz). A - stationary Hahn Echo of K₂SO₄, B - stationary Hahn Echo of In₂(SO₄)₃, C - stationary QCPMG of ZnSO₄, D - stationary Hahn Echo of ZnSO₄, E - stationary QCPMG of β -MgSO₄, F - stationary QCPMG of BaSO₄, G - stationary QCPMG of Ga₂(SO₄)₃, H - stationary QCPMG of Al₂(SO₄)₃.

Figure S8 33 S MAS NMR spectrum of K₂S obtained in a field of 21.1T at spinning rate of 5000 Hz. A total of 64 Bloch Decay scans were accumulated with relaxation delay of 100s.

Compound	Experimental δ_{iso}^{a} (ppm)	Calculated σ_{iso}^{b} (ppm)
Li ₂ S	-343.9	803.57
Na ₂ S	-339.5	780.46
K_2S	-173.7	575.46
CS_2	0	448.43
CaS	-29.1	354.84
SrS	43.5	328.97
ZnS (Cubic)	-236.5	660.00
ZnS (Hexagonal)	-228	625.33
CdS	-284	727.26
PbS	-292.4	788.50

Table S1 – Experimental and calculated ³³S NMR parameters for sulfides used in shielding correlation (Figure 8).^{S1-S3}

^a All experimental δ_{iso} are from Refs.S1-S3, except for K₂S, which was measured in this work (ESM, Figure S8). ^bAll calculations were performed in this work using previously reported structures.^{S4}

References

S1 H. Eckert and J. P. Yesinowski, Journal of the American Chemical Society **108** (9), 2140-2146 (1986).

S2 W. A. Daunch and P. L. Rinaldi, Journal of Magnetic Resonance - Series A **123** (2), 219-221 (1996).

S3 T. A. Wagler, W. A. Daunch, P. L. Rinaldi and A. R. Palmer, Journal of Magnetic Resonance **161** (2), 191-197 (2003).

S4 R. W. G. Wyckoff, Crystal Structures, 2 ed. (John Wiley & Sons, New York, 1964).