Microsphere Assembly of TiO₂ with Tube-in-Tube Nanostructures : Anisotropic Etching and Photovoltaic Enhancement

ZhongQiu Bao,^{a,c} Haixian Xie,^{a,c} Qing Zhu,^{a,c} Jieshu Qian,^b Peng Ruan,^a Xingfu Zhou^a*.

^aState Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P.R. China, ^bSchool of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

^cThese authors contributed equally to this work.

Corresponding author: E-mail: zhouxf@njut.edu.cn

Figure S1. (A) A SEM image showing the overview of the TiO_2 microsphere (R) sample. (B) A SEM image of an individual TiO_2 microsphere. (C) A magnified SEM image showing the surface of the microsphere. (D) XRD patterns of the TiO_2 microsphere (R) sample.

Figure S2. (A-D) FESEM images emphasizing the tubular structures of the TiO_2 microsphere (T) sample. Blues dashed circles in (A, B, and C) indicate that the wall of these nanotubes also have tubular structures, the so-called tube-in-tube structures. (D) magnified images of the region in red dashed circle in (C).

Figure S3. (A, B, and C) TEM images of TiO_2 nanotubes. (D) A magnified TEM image of the same nanotube as shown in (C). Red dashed lines in all images illustrate the V-shaped spaces inside the nanotubes, while the arrows point to the open ends of the nanotubes.

Figure S4. Characteristic photocurrent-voltage (IV) curves of dye-sensitized solar cells assembled by using the TiO_2 nanorod as the middle layer of the sandwiched photoanode (DSSC-R).

We make an addition work that replaces the middle layer of tubular TiO₂ with TiO₂ nanorod and get a $J_{sc} = 13.64 \text{ mA/cm}^2$, $V_{oc} = 0.74 \text{ V}$, FF = 0.68 and $\eta = 6.86 \%$. The conversion efficiency is lower than that of DSSC-2 using TiO₂ nanotube as sandwiched layer.