Supplementary Material (ESI) for CrystEngComm.

Iodine-templated assembly of an In(III) complex with a single-crystal-to-single-crystal transition

Yuan-Chun He, Wei-Qiu Kan, Jiao Guo, Yan Yang, Peng Du, Ying-Ying Liu* and Jian-Fang Ma*

Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

* Correspondence authors
E-mail: liuyy147@nenu.edu.cn (Y.-Y Liu)
E-mail: majf247@yahoo.com (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)

Materials and methods

All chemicals and solvents were of analytical grade and used without further purification. X-ray powder diffractions were conducted on a Rigaku Dmax 2000 X-ray diffractometer with graphite monochromatized Cu K_{α} radiation ($\lambda = 0.154$ nm) at 20 ranging from 5 to 50°. The C, H and N elemental analyses were measured on a Perkin-Elmer 2400 elemental analyzer. IR-spectra were carried out on a Mattson Alpha-Centauri spectrometer at the range of $4000-400 \text{ cm}^{-1}$. The fluorescence data recorded FLSP920 Edinburgh were on a Fluorescence Spectrometer. Thermogravimetric analysis (TGA) was performed on a Perkin-Elmer TG-7 analyzer heated from room temperature to 600 °C under nitrogen gas. All UV/vis spectra were measured on a TU-1900 UV-vis spectrophotometer (Beijing Purkinje General Instrument Co. Ltd., China). Diffuse reflectance spectra were collected on a finely ground sample with a Cary 500 spectrophotometer equipped with a 110 mm diameter integrating sphere, which were measured from 200 to 800 nm. The gas adsorption-desorption experiments were performed on automatic volumetric adsorption equipment (V-Sorb 2800S).

X-ray crystallography

Single-crystal X-ray diffraction data for **1** were recorded on an Oxford Gemini R Ultra diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. All the structures were solved by Direct Method of SHELXS-97¹ and refined by full-matrix least-squares techniques using the SHELXL-97 program² within WINGX.³ Non-hydrogen atoms were refined with anisotropic temperature parameters. All hydrogen atoms on carbon atoms were generated geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic. Hydrogen atoms of water molecules were not included in the model. Selected bond distances and angles are given in the Table S2.

References

1 G. M. Sheldrick, SHELXL-97, *Programs for X-ray Crystal Structure Solution*; University of Göttingen: Göttingen, Germany, 1997.

- 2 G. M. Sheldrick, SHELXL-97, *Programs for X-ray Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.
- 3 L. J. Farrugia, WINGX: A Windows Program for Crystal Structure Analysis; University of Glasgow: Glasgow, UK, 1988.

The experimental data for compound 1a

Compound **1a** was obtained by heating the sample of **1** at 200 °C for 15 hours in the oven. Elemental Anal. Calcd (%) for **1a**, $C_{42}H_{24}In_4N_6O_{27}$: C, 33.54; H, 1.61; N, 5.59; found: C, 33.40.; H, 1.57; N, 5.65. IR spectrum (KBr, cm⁻¹): see Fig. S9.

Fig. S1 Channels A and B with the corresponding sizes.

Fig. S2 The lengths of H₂pydc and HIN.

Fig. S3 The TG curve of compound 1.

Fig. S4 Schematic representation of the 3D framework of **1a**. Compound **1a** has the same 3D framework and two same types of square channels as **1**, except that iodine molecules were removed from the network.

Fig. S5 Emission spectra of 1 and 1a.

(a)

(b)

Fig. S6 (a) Iodine releasing process of 100 mg of 1 soaking in 10 mL of methanol. (b) Temporal evolution of UV/vis absorption spectra for the I_2 delivery from 1 in methanol.

Fig. S7 The diffuse reflectance spectra of compounds **1** and **1a**. After removal the lattice iodine molecules, the peak at 420 nm disappeared.

Fig. S8 IR spectrum of compound 1.

Fig. S9 IR spectrum of compound 1a.

Table S1. The CO₂ maximum uptake of each cycle.

	-	1		2	
Cycle number	1	2	3	4	5
CO_2 uptake (cm ³ g ⁻¹)	33.67	33.17	30.73	30.49	31.37

Table S2. Crystal data and structure refinement for compound 1.

	1
Formula	$C_{42}H_{24}In_4I_2N_6O_{27}$
Fw	1757.76
Crystal system	Orthorhombic
Space group	Pccn
a /Å	16.0630(8)
b /Å	16.4850(9)
c /Å	19.0250(8)
$lpha$ / $^{ m o}$	90
eta / $^{ m o}$	90
γ / o	90
$V/\text{\AA}^3$	5037.8(4)
Ζ	4
D_c / g cm ⁻³	2.318
F(000)	3344
<i>R</i> (int)	0.0628
GOF on F^2	1.079
$R_1[I > 2\sigma(I)]$	0.0690
wR_2 (all data)	0.1868

In(1)-O(4)	2.130(8)	In(1)-O(2)#1	2.191(8)
In(1)-O(12)#2	2.198(7)	In(1)-O(1W)	2.240(8)
In(1)-O(7)#3	2.269(8)	In(1)-O(8)#3	2.018(4)
In(1)-N(3)#2	2.339(9)	In(2)-O(11)#4	2.112(8)
In(2)-O(9)	2.117(8)	In(2)-O(5)	2.128(7)
In(2)-O(1)	2.204(7)	In(2)-N(1)	2.223(9)
In(2)-N(2)	2.246(10)	O(4)-In(1)-O(2)#1	162.7(3)
O(4)-In(1)-O(12)#2	90.7(3)	O(2)#1-In(1)-O(12)#2	93.5(3)
O(4)-In(1)-O(1W)	85.0(3)	O(2)#1-In(1)-O(1W)	79.8(3)
O(12)#2-In(1)-O(1W)	75.5(3)	O(4)-In(1)-O(7)#3	86.3(3)
O(2)#1-In(1)-O(7)#3	81.8(3)	O(12)#2-In(1)-O(7)#3	150.5(3)
O(1W)-In(1)-O(7)#3	74.9(3)	O(4)-In(1)-O(8)#3	93.7(3)
O(2)#1-In(1)-O(8)#3	90.2(3)	O(12)#2-In(1)-O(8)#3	153.0(3)
O(1W)-In(1)-O(8)#3	131.4(3)	O(7)#3-In(1)-O(8)#3	56.5(3)
O(4)-In(1)-N(3)#2	109.9(3)	O(2)#1-In(1)-N(3)#2	87.4(3)
O(12)#2-In(1)-N(3)#2	72.4(3)	O(1W)-In(1)-N(3)#2	144.5(3)
O(7)#3-In(1)-N(3)#2	135.9(3)	O(8)#3-In(1)-N(3)#2	81.1(3)
O(11)#4-In(2)-O(9)	94.9(3)	O(11)#4-In(2)-O(5)	86.8(3)
O(9)-In(2)-O(5)	108.6(3)	O(11)#4-In(2)-O(1)	91.5(3)
O(9)-In(2)-O(1)	160.2(3)	O(5)-In(2)-O(1)	90.4(3)
O(11)#4-In(2)-N(1)	109.0(3)	O(9)-In(2)-N(1)	85.1(3)
O(5)-In(2)-N(1)	158.5(3)	O(1)-In(2)-N(1)	75.1(3)
O(11)#4-In(2)-N(2)	160.9(3)	O(9)-In(2)-N(2)	96.0(4)
O(5)-In(2)-N(2)	74.9(3)	O(1)-In(2)-N(2)	83.5(3)
N(1)-In(2)-N(2)	87.5(3)		

Table S3. Selected bond distances and angles for compound 1.

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x-1/2,y-1/2,-z; $^{#2}$ x,-y-1/2,z-1/2, $^{#3}$ -x+3/2,-y-1/2,z; $^{#4}$ -x+1,y+1/2,-z+1/2.

 Table S4. Crystal data and structure refinement for compound 1a.

	1
Formula	$C_{42}H_{24}In_4N_6O_{27}$
Fw	1503.94
Crystal system	Monoclinic
Space group	$P2_{1}/n$
a /Å	16.0572(10)
b /Å	37.872(5)
c /Å	16.346(2)
α / $^{\rm o}$	90
eta / $^{ m o}$	90
γ / o	90
$V/\text{\AA}^3$	9940.2(19)
Ζ	4

D_c / g cm ⁻³	2.010
F(000)	5840
<i>R</i> (int)	0.1517
GOF on F^2	1.125
$R_1[I > 2\sigma(I)]$	0.2399
wR_2 (all data)	0.4360