Fluorescent unsymmetrical emissive four-ring bent-core mesogens: 2D modulated phases
Rahul Deb, Atiqur Rahman Laskar, Dipika Debnath Sarkar, Golam Mohiuddin, Nirmalangshu Chakraborty, Sharmistha Ghosh, ${ }^{\mathbb{I}}$ D. S. Shankar Rao ${ }^{\#}$ and Nandiraju V S Rao
Chemistry Department, Assam University, Silchar-788011, India.
${ }^{\text {T}}$ Department of Spectroscopy, Indian Association for the Cultivation of Science, Kolkata 700032, India.
\#Centre for Soft Matter Research, Jalahalli, Bangalore 560013, India.
*Corresponding author, Tel:91-3842270943, FAX: 91-3842-270802, E-mail: nandirajuv@gmail.com

## Supporting Information

## Synthesis

The synthesis of the designed compounds $\mathbf{1 - n - m}(\mathbf{m}=\mathbf{1 1}, \mathbf{n}=\mathbf{1 0}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, 15$ and $\mathbf{1 6 ; ~} \mathbf{m}=$ $15, \mathrm{n}=11$ ) and $2-\mathrm{n}-\mathrm{m}(\mathrm{m}=11, \mathrm{n}=10,12,14$ and $16 ; \mathrm{m}=12,13$ and $15, \mathrm{n}=11$ ) are presented in Scheme 1 and the details are presented in electronic supplementary information (ESI). The chemical structures of the final compounds are confirmed by the elemental analysis and spectral techniques ( ${ }^{1} \mathrm{HNMR}$ and FTIR spectroscopy) and are presented in ESI.

## [3-N-(4-n-undecyloxy-2-hydroxybenzylideneamino)phenol] 2:

An ethanolic solution of 3-aminophenol $(0.32 \mathrm{~g}, 3 \mathrm{mmol})$ was added to an ethanolic solution $(20 \mathrm{ml})$ of 4-n-undecyloxy-2-hydroxybenzaldehyde ( $0.87 \mathrm{~g}, 3 \mathrm{mmol}$ ). The mixture was refluxed with a few drops of glacial acetic acid as catalyst for 4 hours to yield the yellow colored Schiff's base. The precipitate was collected by filtration from the hot solution and recrystallized several times from absolute ethanol to give a pure yellow compound. Melting point $=117{ }^{\circ} \mathrm{C}$, Yield $=0.34 \mathrm{~g},(82 \%)$. IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1624\left(v_{\mathrm{CH}=\mathrm{N}}\right.$, imine $) ; 3387\left(v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}-\right.$ bonded); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=13.42(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 13.39(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 8.39(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{CH}=\mathrm{N}), 7.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.45(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.19(2 \mathrm{H}, \mathrm{ArH})$, 6.69 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 6.44 (s, 1H, ArH), 6.29 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 4.03 (t, 2H, J = 7.8Hz, -$\left.\mathrm{O}-\mathrm{CH}_{2}-\right), 1.69\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.33-1.26\left(\mathrm{~m}, 16 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{8}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz},-$ $\mathrm{CH}_{3}$ ). Elemental analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{3}: \mathrm{C}=75.16 \% ; \mathrm{H}=8.67 \% ; \mathrm{N}=3.65 \%$ Found $\mathrm{C}=75.12 \% ; \mathrm{H}=8.64 \% ; \mathrm{N}=3.62 \%$.

## [4-N-(4-n-decyloxy-2-hydroxybenzylideneamino)benzoic acid] 4-10:

An ethanolic solution of 4 -aminobenzoic acid $(0.41 \mathrm{~g}, 3 \mathrm{mmol})$ was added to an ethanolic solution ( 20 ml ) of 4-n-decyloxy-2-hydroxybenzaldehyde ( $0.83 \mathrm{~g}, 3 \mathrm{mmol}$ ). The mixture was refluxed with a few drops of glacial acetic acid as catalyst for 4 hours to yield the yellow colored Schiff's base. The precipitate was collected by filtration from the hot solution and recrystallized several times from absolute ethanol to give a pure compound. Yield $=0.90 \mathrm{~g}$,
(76\%). IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1626$ ( $v_{\mathrm{CH}=\mathrm{N}}$, imine); 1718 ( $\mathrm{v}_{\mathrm{C}=\mathrm{O}}$, acid), $3389\left(v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}\right.$-bonded); ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=13.49(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 10.24(\mathrm{~s}, 1 \mathrm{H},-\mathrm{COOH}), 8.27(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{N}-$ ), $7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, ~ A r H), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}, ~ \mathrm{ArH}), 7.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH})$, $6.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.01\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz},-\mathrm{O}_{\left.-\mathrm{CH}_{2}-\right), 1.61(\mathrm{q},}\right.$ $\left.2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.31-1.26\left(\mathrm{~m}, 14 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{7}-\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4}: \mathrm{C}=72.12 \% ; \mathrm{H}=7.79 \%$, Found $\mathrm{C}=72.41 \% ; \mathrm{H}=7.83 \%$.

## [4-(N-4'-n-decyloxy-2-hydroxybenzylideneamino)phenyl]-[3-(N-4'-n-

 undecyloxysalicylidene-amino)benzoate], 1-10-11:4-(N-4'-n-decyloxy-2-hydroxybenzylidenemino)benzoic acid ( $0.40 \mathrm{~g} ; 1 \mathrm{mmol}$ ) was dissolved in dichloromethane, stirred with a teflon coated magnetic stirrer and a catalytic amount of $\mathrm{N}, \mathrm{N}$-dimethylaminopyridine (DMAP) was added to the solution. To the stirred reaction mixture a solution 3-(N-4-n-undecyloxy-2-hydroxybenzylideneamino)phenol ( $0.38 \mathrm{ml}, 1$ mmol) was slowly added. To the resulting solution an equimolar quantity of dicyclohexylcarbodiimide (DCC) ( $0.206 \mathrm{~g}, 1 \mathrm{mmol}$ ) was added and stirred for 48 hours. After the completion of stirring, the dicyclohexylurea thus formed in the reaction mixture was filtered off. Evaporation of the solvent gives the crude product which was then recrystallized several times from ethanol to obtain the pure product as yellow solid. Yield $=0.56 \mathrm{~g},(74 \%)$.
IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1622$ ( $v_{\mathrm{CH}=\mathrm{N}}$, imine); 1726 ( $v_{\mathrm{C}=\mathrm{O}}$, ester), $3371\left(v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}\right.$-bonded); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=13.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 13.37(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 8.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.55(\mathrm{~s}, 1 \mathrm{H}$, -CH=N-), $8.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.46(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.34(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, ArH), $7.29(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.10-7.18(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 6.47-6.52(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.00(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.82-1.74\left(\mathrm{q}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.59-1.09\left(\mathrm{~m}, 30 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{15}\right), 0.88$ ( $\mathrm{t}, 6 \mathrm{H},-\mathrm{CH}_{3}$ ). Elemental analysis calculated for $\mathrm{C}_{48} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}=75.56 \% ; \mathrm{H}=8.19 \%$, Found $\mathrm{C}=75.45 \%$; $\mathrm{H}=8.16 \%$.

## [3-N-(4-n-undecyloxy-2-hydroxybenzylideneamino)benzoic acid] 5:

The synthesis of [3-N-(4-undecyloxy-2-hydroxybenzylideneamino)benzoic acid] was carried out following the procedure adopted for 4-10 using the starting materials 4-n-undecyloxy-2hydroxybenzaldehyde ( $0.87 \mathrm{~g}, 3 \mathrm{mmol}$ ) with 3 -aminobenzoic acid ( $0.41 \mathrm{~g}, 3 \mathrm{mmol}$ ). Yield: $0.97 \mathrm{~g}(79 \%)$. IR $v_{\text {max }}$ in $\mathrm{cm}^{-1}: 1617$ ( $v_{\mathrm{CH}=\mathrm{N}}$, imine); 1722 ( $\mathrm{v}_{\mathrm{C}=\mathrm{O}}$, acid), 3398 ( $\mathrm{v}_{\mathrm{O}-\mathrm{H}}$, H-bonded); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=13.50(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 10.21(\mathrm{~s}, 1 \mathrm{H},-\mathrm{COOH}), 8.32(\mathrm{~s}, 1 \mathrm{H},-$ $\mathrm{CH}=\mathrm{N}-), 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.44(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.32(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}$, ArH), $7.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{ArH}), 7.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.05(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz},-\mathrm{O}-\mathrm{CH}_{2}-\right), 1.61\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.31-1.22\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{2}\right)_{8}\right)$,
$0.89\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{4}: \mathrm{C}=72.96 \% ; \mathrm{H}=$ $8.08 \% ; \mathrm{N}=3.40 \%$ Found $\mathrm{C}=72.93 \% ; \mathrm{H}=8.05 \% ; \mathrm{N}=3.37 \%$.

## [4-N-(4-n-dodecyloxy-2-hydroxybenzylideneamino)phenol] 6-12:

An ethanolic solution of 4 -aminophenol $(0.32 \mathrm{~g}, 3 \mathrm{mmol})$ was added to an ethanolic solution $(20 \mathrm{ml})$ of 4-n-dodecyloxy 2-hydroxybenzaldehyde ( $0.91 \mathrm{~g}, 3 \mathrm{mmol}$ ). The mixture was refluxed with a few drops of glacial acetic acid as catalyst for 4 hours to yield the yellow colored Schiff's base. The precipitate was collected by filtration from the hot solution and recrystallized several times from absolute ethanol to give a pure yellow compound. Yield $=$ 0.97 g , (82\%).
[4-(N-4'-n-dodecyloxy-2-hydroxybenzylideneamino)phenyl]-[3-(N-4'-n-undecyloxy-2-

## hydroxybenzylideneamino)-benzoate], 2-12-11

2-12-11 was synthesized following the procedure adopted for 1-10-11. The pure product was obtained as yellow solid. Yield $=0.57 \mathrm{~g},(73 \%)$.

IR $v_{\max }$ in $\mathrm{cm}^{-1}: 1624\left(v_{\mathrm{CH}=\mathrm{N}}\right.$, imine); 1741 ( $v_{\mathrm{C}=\mathrm{O}}$, ester), 3429 ( $v_{\mathrm{O}-\mathrm{H}}, \mathrm{H}$-bonded); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta=13.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 13.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.61(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{N}), 8.54(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{CH}=\mathrm{N}-$ ), $8.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \operatorname{ArH}), 8.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.55(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}, \mathrm{ArH}$ ), 7.32 (d, 2H, J = $8.4 \mathrm{~Hz}, \mathrm{ArH}$ ), 7.26 (d, 2H, J = $8.4 \mathrm{~Hz}, \mathrm{ArH}$ ), 7.10-7.18 (m, 3H, ArH), 6.49-6.51 (m, 4H, ArH), 4.01-3.99 (t, 4H, J = 6.0Hz, -O-CH2-), 1.82-1.77 (q, 4H, -$\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 1.65-1.26\left(\mathrm{~m}, 35 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{2}-\right), 0.88\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$. Elemental analysis calculated for $\mathrm{C}_{50} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}=75.91 \%, \mathrm{H}=8.41 \%$, Found $\mathrm{C}=75.58 \%, \mathrm{H}=8.24 \%$.



Figure S1: (a), (b) Phase transition temperatures $\left({ }^{\circ} \mathrm{C}\right)$ of the compounds 1-11-15, 2-12-11 recorded for second heating (first row) and second cooling (second row) cycles at $5^{\circ} \mathrm{C} / \mathrm{min}$ from DSC.


Figure S2: Four consecutive runs of DSC thermograms recorded for 1-15-11 with heating and cooling rates @ $5^{\circ} \mathrm{C} / \mathrm{m}$ are shown below.


Figure S3: Four consecutive runs of DSC thermograms recorded for 2-12-11 with heating and cooling rates @ $5^{\circ} \mathrm{C} / \mathrm{m}$ are shown below.


Figure S4 (a): Phase transition temperatures of 1-n-11 homologue as a function of number of carbons in the alkyl chain length. (b) Phase transition temperatures 2-n-11 as a function of number of carbons in the alkyl chain length in the cooling cycle at a cooling rate of $5^{\circ} \mathrm{C} / \mathrm{m}$


Figure S5: The switching current response obtained by applying a triangular-wave field of $\pm 80 \mathrm{Vpp}$ for compound $1-15-11$ at $105^{\circ} \mathrm{C}$ at different frequencies.

Table S1: DFT calculated bend angle $\Theta$ as shown in Figure 7, dipole moment components ( $\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}, \mu_{\mathrm{Z}}$ ), and the resultant dipole moment ( $\mu$ ).

| Compounds | Dipole moment (Debye) |  |  |  | Bend angle (degree) | Molecular <br> length $(\AA)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mu_{\mathrm{x}}$ | $\mu_{\mathrm{y}}$ | $\mu_{\mathrm{z}}$ | $\begin{aligned} & \mu_{\text {resultant }}= \\ & \left(\mu_{\mathrm{x}}{ }^{2}+\mu_{\mathrm{y}}{ }^{2}+\mu_{\mathrm{z}}{ }^{2}\right)^{1 / 2} \end{aligned}$ |  |  |
| 1-10-11 | 1.51 | 2.19 | 1.14 | 2.90 | 125 | 49.2 |
| 1-11-11 | 1.55 | 1.87 | 1.42 | 2.82 | 124 | 50.1 |
| 1-12-11 | 1.39 | 2.00 | 0.43 | 2.48 | 123 | 51.5 |
| 1-13-11 | 1.36 | 1.93 | 0.44 | 2.40 | 123 | 52.6 |
| 1-14-11 | 1.38 | 1.57 | 0.63 | 2.18 | 120 | 52.8 |
| 1-15-11 | 1.38 | 1.45 | 0.80 | 2.16 | 120 | 54.0 |
| 1-16-11 | 1.38 | 1.54 | 0.78 | 2.21 | 120 | 55.3 |
| 2-10-11 | 0.86 | 4.38 | 5.39 | 7.00 | 141 | 51.1 |
| 2-11-11 | 0.86 | 4.26 | 5.38 | 6.92 | 141 | 52.3 |
| 2-12-11 | 0.88 | 4.26 | 5.46 | 6.98 | 141 | 53.6 |
| 2-13-11 | 0.88 | 4.15 | 5.44 | 6.91 | 141 | 54.8 |
| 2-14-11 | 0.90 | 4.16 | 5.51 | 6.97 | 141 | 56.1 |
| 2-15-11 | 0.91 | 4.06 | 5.49 | 6.89 | 141 | 57.4 |
| 2-16-11 | 0.92 | 4.08 | 5.55 | 6.96 | 141 | 58.6 |

The values relative to angles and dipole moment are expressed in degree $\left({ }^{\circ}\right)$ and Debye (D) respectively.

Table S2: DFT calculated principal polarizability components ( $\alpha_{X X}, \alpha_{Y Y}, \alpha_{Z Z}$ ), isotropic polarizability $\alpha^{\text {iso }}=\left(\alpha_{X X}+\alpha_{Y Y}+\alpha_{Z Z}\right) / 3$, Polarizability anisotropy $\Delta \alpha=\left[\alpha_{X X}-\left(\alpha_{Y Y}+\right.\right.$ $\left.\left.\alpha_{Z Z}\right) / 2\right]$, and asymmetry parameter, $\eta=\left[\left(\alpha_{Y Y}-\alpha_{Z Z}\right) /\left(\alpha_{X X}-\alpha^{\text {iso }}\right)\right]$. Parameters relative to the molecular polarizability tensor in the Cartesian reference frame

| Compound | $\alpha_{\mathrm{XX}}$ | $\alpha_{\mathrm{YY}}$ | $\alpha_{\mathrm{ZZ}}$ | $\alpha_{\text {iso }}$ | $\Delta \alpha$ | $\eta_{\alpha}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 - 1 0 - 1 1}$ | 1167 | 569 | 377 | 705 | 694 | 0.41 |
| $\mathbf{1 - 1 1 - 1 1}$ | 1177 | 579 | 393 | 716 | 691 | 0.40 |
| $\mathbf{1 - 1 2 - 1 1}$ | 1198 | 610 | 382 | 730 | 702 | 0.48 |
| $\mathbf{1 - 1 3 - 1 1}$ | 1216 | 620 | 391 | 742 | 711 | 0.48 |
| $\mathbf{1 - 1 4 - 1 1}$ | 1215 | 649 | 402 | 755 | 690 | 0.53 |
| $\mathbf{1 - 1 5 - 1 1}$ | 1231 | 654 | 416 | 767 | 696 | 0.51 |
| $\mathbf{1 - 1 6 - 1 1}$ | 1247 | 666 | 425 | 779 | 702 | 0.51 |
| $\mathbf{2 - 1 0 - 1 1}$ | 1203 | 463 | 434 | 700 | 755 | 0.05 |
| $\mathbf{2 - 1 1 - 1 1}$ | 1221 | 471 | 445 | 712 | 763 | 0.05 |
| $\mathbf{2 - 1 2 - 1 1}$ | 1239 | 480 | 455 | 725 | 772 | 0.05 |
| $\mathbf{2 - 1 3 - 1 1}$ | 1257 | 488 | 466 | 737 | 780 | 0.04 |
| $\mathbf{2 - 1 4 - 1 1}$ | 1275 | 498 | 476 | 749 | 788 | 0.04 |
| $\mathbf{2 - 1 5 - 1 1}$ | 1291 | 506 | 487 | 762 | 795 | 0.03 |
| $\mathbf{2 - 1 6 - 1 1}$ | 1310 | 516 | 497 | 774 | 804 | 0.03 |
| All polarizability components and <br> 1 Bohr $=0.52917$ <br> A |  |  |  |  |  |  |

