Supplementary information

Graphene homogeneously anchored with Ni(OH)₂ nanoparticles as advanced supercapacitor electrodes

Huijun Yan^{a,b}, Jianwei Bai^c, Jun Wang^{a,d,*}, Xiuyu Zhang^b, Bin Wang^a, Qi Liu^a, and Lianhe Liu^d

^a Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, Harbin Engineering University, 150001, PR China.

^b Department of Chemistry, Harbin University, 150086, PR China.

^c Polymer Materials Research Center, Harbin Engineering University, 150001, PR China.

^d Institute of Advanced Marine Materials, Harbin Engineering University, 150001, PR China.

*Corresponding author: Tel.: +86 451 8253 3026; fax: +86 451 8253 3026. E-mail address: zhqw1888@sohu.com

Figure S1 Specific capacitance of $GNS/Ni(OH)_2$ at different scan rates calculated from the cyclic voltammetry measurements at scan rates of 2, 5, 10 and 20 mV s⁻¹.

Figure S2 Discharge curves of $GNS/Ni(OH)_2$ electrode measured at different discharge current densities in 6.0 mol L⁻¹ KOH solution.