Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Fig. S1 The grown crystal of 3NCA

Fig. S2 Crystal packing when viewed along the a-axis

Crystal packing in 3nitrocinnamic acid

In the crystal, the independent 3nitrocinnamic acid molecules are linked by complimentary intermolecular O-H^{...}O hydrogen bonds. Atom O₂₀ acts as a hydrogen bond donor to carbonyl atom O₁₉ of another 3nitrocinnamic acidmolecule (-x+1, -y-1, -z). The D^{...}A distance being 2.636(3) Å and the D-H^{...}A angle of 169°. This hydrogen bonding interaction leads to the formation of centrosymmetric dimers with a graph set notation of R₂²(8). The packing diagram exhibits stacking of such dimers along the crystallographic a axis.

Fig.S3 Indentation mark for 10gm

Fig.S4 Indentation mark for 30 gm

Fig. S5 load P Vs d^n

Table S1. Optimized geometrical parameters of 3NCA

	Bond Ler	ngth (Å)			Bond Angle(⁰)			Dihedral Angle(⁰)			
Paramet	Mono	Dimer	Exp.	Parameter	Mono	Dimer	Exp.	Parameter	Mono	Dimer	Exp.
er	mer				mer				mer		
C_1 - C_2	1.407	1.407	1.389	C ₁ -C ₂ -H ₃	122.10	122.13	120.52	C_9 - C_1 - C_2 - C_4	0.003	-0.004	0.98
C ₂ -H ₃	1.088	1.088	0.930	C ₁ -C ₂ -C ₄	119.36	119.35	118.80	C_1 - C_2 - C_4 - C_5	-0.002	0.001	-0.86
C ₂ -C ₄	1.389	1.388	1.368	C ₂ -C ₄ -C ₅	122.65	122.65	123.26	C ₂ -C ₄ -C ₅ -H ₆	179.99	179.99	179.97
C ₄ -C ₅	1.397	1.397	1.381	C ₄ -C ₅ -H ₆	119.46	119.46	121.20	C ₂ -C ₄ -C ₅ -C ₇	0.00	0.002	-0.06
C ₅ -H ₆	1.088	1.088	0.930	C ₄ -C ₅ -C ₇	118.08	118.09	117.70	C ₄ -C ₅ -C ₇ -H ₈	- 179.99	179.99	179.22
C ₅ -C ₇	1.394	1.394	1.378	C ₅ -C ₇ -H ₈	119.79	119.78	119.83	C ₄ -C ₅ -C ₇ -C ₉	0.001	-0.001	0.83
C ₇ -H ₈	1.091	1.091	0.929	C ₅ -C ₇ -C ₉	120.23	120.22	120.37	C ₅ -C ₇ -C ₉ -H ₁₀	179.99	179.99	179.30
C ₇ -C ₉	1.396	1.396	1.366	C ₇ -C ₉ -H ₁₀	119.65	119.65	119.18	H ₃ -C ₂ -C ₄ -N ₁₁	-0.003	0.003	0.09
C ₉ -H ₁₀	1.092	1.092	0.929	C ₂ -C ₄ -N ₁₁	118.58	118.57	118.87	$C_4 - C_2 - C_1 - C_{12}$	- 179.99	179.99	- 179.56
C ₄ -N ₁₁	1.483	1.483	1.471	$C_2 - C_1 - C_{12}$	122.75	122.73	122.06	$C_2 - C_1 - C_{12} - H_{13}$	- 179.98	179.92	179.40
C ₁ -C ₁₂	1.465	1.465	1.463	C ₁ -C ₁₂ -H ₁₃	116.18	116.16	115.92	$C_2 - C_1 - C_{12} - C_{14}$	0.01	-0.09	-0.60
C ₁₂ -H ₁₃	1.095	1.095	0.929	C ₁ -C ₁₂ -C ₁₄	127.5	127.36	128.09	H ₁₃ -C ₁₂ -C ₁₄ - H ₁₅	179.99	179.99	179.55
C ₁₂ -C ₁₄	1.345	1.346	1.322	C ₁₂ -C ₁₄ -H ₁₅	123.41	123.41	118.96	$\begin{array}{c} H_{13}\text{-}C_{12}\text{-}C_{14}\text{-}\\ C_{16} \end{array}$	-0.00	-0.01	-0.45
C ₁₄ -H ₁₅	1.091	1.091	0.980	C_{12} - C_{14} - C_{16}	119.68	120.53	122.17	C ₂ -C ₄ -N ₁₁ -O ₁₇	- 179.98	179.99	171.97
C ₁₄ -C ₁₆	1.480	1.478	1.459	C ₄ -N ₁₁ -O ₁₇	117.43	117.33	118.30	C ₂ -C ₄ -N ₁₁ -O ₁₈	0.02	0.002	8.57
N ₁₁ -O ₁₇	1.224	1.224	1.218	$C_{4}-N_{11}-O_{18}$	117.53	117.51	118.43	$H_{15} - C_{14} - C_{16} - C_{16}$	- 179.99	- 179.99	177.44

								O ₁₉			
N ₁₁ -O ₁₈	1.225	1.225	1.212	C ₁₄ -C ₁₆ -O ₁₉	126.03	122.75	120.68	H ₁₅ -C ₁₄ -C ₁₆ -	0.006	-0.001	-2.01
								O ₂₀			
C ₁₆ -O ₁₉	1.214	1.237	1.244	C_{14} - C_{16} - O_{20}	111.20	112.93	115.69	O ₁₉ -C ₁₆ -O ₂₀ -	-0.001	-0.059	-2.90
								H ₂₁			
C ₁₆ -O ₂₀	1.355	1.319	1.278	C_{16} - O_{20} - H_{21}	105.91	110.03	109.49				
O ₂₀ -H ₂₁	0.974	1.012	0.820								

Table S2. Experimental and calculated absorption wavelengths, energies and oscillator strengths of 3NCA using the TD-DFT

method at the B3LYP/cc-pvdz and BHHLYP/cc-pvdz level

Excitation	CI expansion coefficient	Wavelen- gth (nm) Calc. gas phase	Oscillato r strength (f)	Excitation	CI expansion coefficient	Wavelen- gth (nm) Calc. ethanol B3LYP/cc -pvdz	Oscillat or strength (f)	Excitation	CI expansion coefficient	Waveler gth (nm) Calc. ethano l BHand HLYP	Oscilla tor strengt h (f)	Exp t. (nm)
Excited state1	Singlet A			Excited state1	Singlet A			Excited state1	Singlet A			
$47 \rightarrow 51$	0.65951			$48 \rightarrow 52$	-0.11850			45 -> 51	-0.64248		0.0000	
$47 \rightarrow 52$	-0.21927	324.50	0.0000	$50 \rightarrow 51$	0.67757	335.44	0.0170	45 -> 52	-0.17808	287.36		
$47 \rightarrow 53$	0.10476			$50 \rightarrow 52$	0.12637			45 -> 53	-0.17649			
								45 -> 54	-0.13867			

Excited state2	Singlet A			Excited state2	Singlet A			Excited state2	Singlet A			
$48 \rightarrow 51$	0.11714	320.04	0.0129	$47 \rightarrow 51$	0.68872	315.46	0.0000	49 -> 51	-0.14866			
$48 \rightarrow 52$	0.13375			$47 \rightarrow 52$	0.11237			49 -> 52	0.17241	278.59	0.0212	261
$50 \rightarrow 51$	0.63601							50 -> 51	-0.63071			
$50 \rightarrow 52$	-0.24472							50 -> 52	-0.16601			
Excited state3	Singlet A			Excited state3	Singlet A			Excited state3	Singlet A			
$49 \rightarrow 51$	0.32658							43 -> 51	0.63899			
$49 \rightarrow 52$	0.61076	296.28	0.0000	$49 \rightarrow 51$	-0.21175	284.03	0.0000	43 -> 52	0.17611	259.39	0.0000	
$49 \rightarrow 54$	0.10018			$49 \rightarrow 52$	0.65877			43 -> 53	0.16492			
				$49 \rightarrow 54$	-0.10441			43 -> 54	0.12962			

Table S3: Definition of internal co-ordinates of 3NCA

No.	Symbol	Туре	Definition
		S	tretching
		-	
1-8	Ri	C-H (ring)	$C_2-H_3, C_5-H_6, C_7-H_8, C_9-H_{10}, C_{20}-H_{21}, C_{23}-H_{24},$
			C_{25} - H_{26} , C_{27} - H_{28} .
9-12	Ri	C-H (SUB)	C_{12} - H_{13} , C_{14} - H_{15} , C_{30} - H_{31} , C_{32} - H_{33} .
13-24	r _i	C-C (ring)	$C_1-C_2, C_2-C_4, C_4-C_5, C_5-C_7, C_7-C_9, C_9-C_1, C_{19}-C_{20},$
			C ₂₀ -C ₂₂ , C ₂₂ -C ₂₃ , C ₂₃ -C ₂₅ , C ₂₅ -C ₂₇ , C ₂₇ -C ₁₉ .
25-30	ri	C-C (SUB)	C_1 - C_{12} , C_{12} - C_{14} , C_{14} - C_{16} , C_{19} - C_{30} , C_{30} - C_{32} , C_{32} -
			C _{34.}
31-34	qi	N-O	N_{11} - O_{17} , N_{11} - O_{18} , N_{29} - O_{35} , N_{29} - O_{36}
35-38	Qi	C-O	C_{16} - O_{40} , C_{16} - O_{41} , C_{34} - O_{37} , C_{34} - O_{38}
39-40	Ri	C-N	$C_4-N_{11},C_{22}-N_{29}$
41-44	qi	O-H	O ₄₁ -H ₄₂ ,O ₃₈ -H ₃₉ ,O ₄₀ -H ₃₉ ,O ₃₇ -H ₄₂
			Bending
45-56	βi	C-C-H (Ring1)	C ₁ -C ₂ -H ₃ ,C ₄ -C ₂ -H ₃ ,C ₄ -C ₅ -H ₆ ,C ₇ -C ₅ -H ₆ ,
			C ₅ -C ₇ -H ₈ ,C ₉ -C ₇ -H ₈ ,C ₇ -C ₉ -H ₁₀ ,C ₁ -C ₉ -H ₁₀ ,
			C ₁ -C ₁₂ -H ₁₃ , C ₁₄ -C ₁₂ -H ₁₃ , C ₁₂ -C ₁₄ -H ₁₅ , C ₁₆ -C ₁₄ -
			H ₁₅ .
57-68	βi	C-C-H (Ring2)	C ₁₉ -C ₂₀ -H ₂₁ , C ₂₂ -C ₂₀ -H ₂₁ , C ₂₂ -C ₂₃ -H ₂₄ , C ₂₅ -C ₂₃ -
			H ₂₄ , C ₂₃ -C ₂₅ -H ₂₆ , C ₂₇ -C ₂₅ -H ₂₆ , C ₂₅ -C ₂₇ -H ₂₈ , C ₁₉ -
			$C_{27}-H_{28}, C_{19}-C_{30}-H_{31}, C_{32}-C_{30}-H_{31}, C_{30}-C_{32}-H_{33},$
			C_{34} - C_{32} - H_{33} .
69-70	βi	С-О-Н	$C_{16}-O_{41}-H_{42}, C_{34}-O_{38}-H_{39}$
71-72	θi	O-H-O	O_{38} - H_{39} - O_{40} , O_{41} - H_{42} - O_{37}
73-76	αi	C-C-C (SUB)	$C_9-C_1-C_{12}, C_2-C_1-C_{12}, C_{27}-C_{19}-C_{30}, C_{20}-C_{19}-C_{30}.$
77-81	αi	b(C-C-C)	$C_2 - C_1 - C_{12}, \overline{C_1 - C_{12} - C_{14}, C_{12} - C_{14} - C_{16}, C_{19} - C_{30} - C_{32},$
			C_{30} - C_{32} - C_{34} ,

82-85	θi	C-N-O	C ₄ -N ₁₁ -O ₁₇ , C ₄ -N ₁₁ -O ₁₈ , C ₂₂ -N ₂₉ -O ₃₅ , C ₂₂ -N ₂₉ -
			O ₃₆
86-89	αί	C-C-O	C_{14} - C_{16} - O_{40} , C_{14} - C_{16} - O_{41} , C_{32} - C_{34} - O_{37} , C_{32} - C_{34} -
			O ₃₈
90-95	δί	C-C-C (Ring1)	C ₁ -C ₂ -C ₄ , C ₂ -C ₄ -C ₅ , C ₄ -C ₅ -C ₇ , C ₅ -C ₇ -C ₉ , C ₇ -C ₉ -
			$C_1, C_9 - C_1 - C_2.$
96-101	δί	C-C-C (Ring2)	C ₁₉ -C ₂₀ -C ₂₂ , C ₂₀ -C ₂₂ -C ₂₃ , C ₂₂ -C ₂₃ -C ₂₅ , C ₂₃ -C ₂₅ -
			$C_{27}, C_{25}-C_{27}-C_{19}, C_{27}-C_{19}-C_{20}.$
102-105	βi	C-C-N	C ₂ -C ₄ -N ₁₁ , C ₅ -C ₄ -N ₁₁ , C ₂₀ -C ₂₂ -N ₂₉ , C ₂₃ -C ₂₂ -
			N ₂₉ .
	•	Out o	f plane bending
106-111	ω _i	C-H (Ring1)	H ₃ -C ₂ -C ₄ -C ₁ , H ₆ -C ₅ -C ₇ -C ₄ , H ₈ -C ₇ -C ₉ -C ₅ , H ₁₀ -
			C_9 - C_1 - C_7 , H_{13} - C_{12} - C_{14} - C_1 , H_{15} - C_{14} - C_{12} - C_{16} .
112-117	ω _i	C-H (Ring 2)	H ₂₁ -C ₂₀ -C ₂₂ -C ₁₉ , H ₂₄ -C ₂₃ -C ₂₅ -C ₂₂ , H ₂₆ -C ₂₅ -C ₂₇ -
			C ₂₃ , H ₂₈ -C ₂₇ -C ₁₉ -C ₂₅ , H ₃₁ -C ₃₀ -C ₃₂ -C ₁₉ , H ₃₃ -C ₃₂ -
			C_{30} - C_{34} .
118-119	ω _i	C-N	N_{11} - C_4 - C_2 - C_5 , N_{29} - C_{22} - C_{23} - C_{20} .
120-121	ω _i	N-O	C ₄ -N ₁₁ -O ₁₇ -O ₁₈ ,C ₂₂ -N ₂₉ -O ₃₅ -O ₃₆
122-123	ω _i	C-O	C ₁₄ -C ₁₆ -O ₄₀ -O ₄₁ ,C ₃₂ -C ₃₄ -O ₃₇ -O ₃₈
124-125	ω _i	C-C (SUB)	C_{12} - C_1 - C_2 - C_9 , C_{30} - C_{19} - C_{20} - C_{27}
			Torsion
126-131	$ au_{i}$	t(C-C) Ring1	C ₁ -C ₂ -C ₄ -C ₅ , C ₂ -C ₄ -C ₅ -C ₇ , C ₄ -C ₅ -C ₇ -C ₉ , C ₅ -C ₇ -
			$C_9-C_1, C_7-C_9-C_1-C_2, C_9-C_1-C_2-C_4.$
132-137	$ au_{i}$	t(C-C) Ring2	C ₁₉ -C ₂₀ -C ₂₂ -C ₂₃ , C ₂₀ -C ₂₂ -C ₂₃ -C ₂₅ , C ₂₂ -C ₂₃ -C ₂₅ -
			C ₂₇ , C ₂₃ -C ₂₅ -C ₂₇ -C ₁₉ , C ₂₅ -C ₂₇ -C ₁₉ -C ₂₀ , C ₂₇ -C ₁₉ -
			C_{20} - C_{22} .
138-141	$ au_i$	t(C-O)	C_{12} - C_{14} - C_{16} - O_{40} , H_{15} - C_{14} - C_{16} - O_{41} ,
			C ₃₀ -C ₃₂ -C ₃₄ -O ₃₇ , H ₃₃ -C ₃₂ -C ₃₄ -O ₃₈
142-145	$ au_i$	t(N-O)	$C_5-C_4-N_{11}-O_{18}, C_2-C_4-N_{11}-O_{18}, C_{20}-C_{22}-N_{29}-O_{36},$
			C_{20} - C_{22} - N_{29} - O_{36} .
146-147	$ au_i$	t(CCOH)	C ₁₄ -C ₁₆ -O ₄₁ -H ₄₂ ,C ₃₂ -C ₃₄ -O ₃₈ -H ₃₉
148-153	$ au_{ m i}$	t(CCCC)	C ₉ -C ₁ -C ₁₂ -C ₁₄ , C ₂ -C ₁ -C ₁₂ -C ₁₄ , C ₂₇ -C ₁₉ -C ₃₀ -C ₃₂ ,

			$\begin{array}{c} C_{20}-C_{19}-C_{30}-C_{32}, C_{1}-C_{12}-C_{14}-C_{16}, C_{19}-C_{30}-C_{32}-\\ C_{34}. \end{array}$
153-156	$ au_{i}$	t(OHO)	$C_{16}-O_{41}-H_{42}-O_{37}, C_{34}-O_{37}-H_{42}-O_{41}, C_{16}-O_{40}-H_{39}-O_{38}, C_{34}-O_{38}-H_{39}-O_{40}.$

Table S4: Definition of local symmetry coordinates (much like the natural internal coordinates) and the corresponding force constant (mdyne/A°) with scale factors used

No.	Symbol	Definition	Scale	Force constant
			factors	
		Stretching		
1-8	vC-H	$R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8$	0.9220	5.17
9-12	vC-H(SUB)	$R_9, R_{10}, R_{11}, R_{12}.$	0.9220	5.17
13-24	vC-C	$r_{13}, r_{14}, r_{15}, r_{16}, r_{17}, r_{18}, r_{19}, r_{20}, r_{21}, r_{22}, r_{23}, r_{24}.$	0.9110	6.29
25-30	vC-C(SUB)	$r_{25}, r_{26}, r_{27}, r_{28}, r_{29}, r_{30}.$	0.9202	5.73
31-32	v NO2ss	$(q_{31}+q_{32})/\sqrt{2}, (q_{33}+q_{34})/\sqrt{2}$	0.9532	11.42
33-34	v NO2as	$(q_{31}-q_{32})/\sqrt{2}, (q_{33}-q_{34})/\sqrt{2}$	0.9532	8.79
35-36	v CO2ss	$(Q_{35}+Q_{36})/\sqrt{2}, (Q_{37}+Q_{38})/\sqrt{2}$	0.9532	10.84
37-38	v CO2as	$(Q_{35}-Q_{36})/\sqrt{2}, (Q_{37}-Q_{38})/\sqrt{2}$	0.9212	7.91
39-40	vCN	R_{39}, R_{40}	0.9460	3.81
41-44	νОН	q ₄₁ ,q ₄₂ ,q ₄₃ ,q ₄₄	0.9220	6.02
		Bending		
45-50	bCH (Ring1)	$(\beta_{45}-\beta_{46})/\sqrt{2}, (\beta_{47}-\beta_{48})/\sqrt{2}, (\beta_{49}-\beta_{50})/\sqrt{2}, (\beta_{49}-\beta_{50})/\sqrt{2}$	0.9245	0.47
51-56	bCH (Ring2)	$(\beta_{57}-\beta_{58})/\sqrt{2}, (\beta_{59}-\beta_{60})/\sqrt{2}, (\beta_{61}-\beta_{62})/\sqrt{2}, (\beta_{63}-\beta_{64})/\sqrt{2}, (\beta_{65}-\beta_{66})/\sqrt{2}, (\beta_{67}-\beta_{68})/\sqrt{2}.$	0.9245	0.47
57-58	bCOH	β_{69}, β_{70}	0.9561	4.84
59-60	ьоно	θ_{71}, θ_{72}	0.9561	1.67
61-62	bCC SUB	$(\alpha_{73} - \alpha_{74}) / \sqrt{2}, (\alpha_{75} - \alpha_{76}) / \sqrt{2}.$	0.9562	0.85
63-67	bCCC	$\alpha_{77}, \alpha_{78}, \alpha_{79}, \alpha_{80}, \alpha_{81}.$	0.9562	1.08
68-69	bNO2ro	$(\theta_{82}-\theta_{83})/\sqrt{2}, (\theta_{84}-\theta_{85})/\sqrt{2}$	0.9561	1.32
70-71	bNO2tw	$(\theta_{82}+\theta_{83})/\sqrt{2}, (\theta_{84}+\theta_{85})/\sqrt{2}$	0.9561	4.62
72-73	bCO2ro	$(\alpha_{86}-\alpha_{87})/\sqrt{2}, (\alpha_{88}-\alpha_{89})/\sqrt{2}$	0.9561	1.00
74-75	bCO2tw	$(\alpha_{86}+\alpha_{87})/\sqrt{2}, (\alpha_{88}+\alpha_{89})/\sqrt{2}$	0.9561	7.73
76	bRtri(Ring1)	$(\delta_{90}-\delta_{91}+\delta_{92}-\delta_{93}+\delta_{94}-\delta_{95})/\sqrt{6}$	0.9630	1.21
77	bRtri(Ring2)	$(\delta_{96}-\delta_{97}+\delta_{98}-\delta_{99}+\delta_{100}-\delta_{101})/\sqrt{6}$	0.9630	1.21

78-79	bRsym	$(-\delta_{90}-\delta_{91}+2\delta_{92}-\delta_{93}-\delta_{94}+2\delta_{95})/\sqrt{6}, (-\delta_{96}-\delta_{97}+2\delta_{99}-\delta_{99}+\delta_{100}+2\delta_{101})/\sqrt{6}$	0.9630	1.24
80	bRasy(Ring1)	$(\delta_{90} - \delta_{91} + \delta_{93} - \delta_{94})/2$	0.9630	1.22
81	bRasy(Ring2)	$(\delta_{96} - \delta_{97} + \delta_{99} - \delta_{100})/2$	0.9630	1.22
82-83	bCN	$(\beta_{102} - \beta_{103})/\sqrt{2}, (\beta_{104} - \beta_{105})/\sqrt{2}$	0.9561	1.19
		Out-of-Plane bending (wagging)		
84-89	gCH(Ring 1)	$\omega_{106}, \omega_{107}, \omega_{108}, \omega_{109}, \omega_{110}, \omega_{111}.$	0.9532	0.46
90-95	gCH(Ring 2)	$\omega_{112}, \omega_{113}, \omega_{114}, \omega_{115}, \omega_{116}, \omega_{117}.$	0.9532	0.46
96-97	gCN	$\omega_{118}, \omega_{119}.$	0.9715	0.55
98-99	gNO2	$\omega_{120}, \omega_{121}.$	0.9715	0.52
100-	gCO2	$\omega_{122}, \omega_{123}.$	0.9715	0.76
101				
102-	gccsub	$\omega_{124}, \omega_{125}.$	0.9715	0.54
103				
		Torsion		• • • •
104	tRtri(Ring1)	$(\tau_{126} - \tau_{127} + \tau_{128} - \tau_{129} + \tau_{130} - \tau_{131})/\sqrt{6}$	0.9707	3.66
105	tRtri(Ring2)	$(\tau_{132} - \tau_{133} + \tau_{134} - \tau_{135} + \tau_{136} - \tau_{137})/\sqrt{6}$	0.9707	3.66
106	tRsym(Ring1)	$(\tau_{126} - \tau_{128} + \tau_{129} - \tau_{131})/2$	0.9707	5.71
107	tRsym(Ring2)	$(\tau_{132} - \tau_{134} + \tau_{135} - \tau_{137})/2$	0.9707	5.71
108-	tRasy	$(-\tau_{132}+2\tau_{133}-\tau_{134}-\tau_{135}+2\tau_{136}-\tau_{137})/\sqrt{6},$	0.9707	12.90
109		$(-\tau_{132}+2\tau_{133}-\tau_{134}-\tau_{135}+2\tau_{136}-\tau_{137})/\sqrt{6}$		
110-	tCO2	$(\tau_{138}+\tau_{139})/2, (\tau_{140}+\tau_{141})/2$	1.000	0.11
111				
112-	tNO2	$(\tau_{142}+\tau_{143})/2, (\tau_{144}+\tau_{145})/2$	1.000	0.07
113				
114-	tCCOH	$\tau_{146}, \tau_{147}.$	1.000	0.335
115	10000		1.000	0.00
116-	tCCCC	$(\tau_{148} + \tau_{149})/2, (\tau_{150} + \tau_{151})/2, \tau_{152}, \tau_{153}$	1.000	0.28
119	40110		1.000	0.95
120-	tOHO	$(\tau_{153} + \tau_{154})/2, (\tau_{155} + \tau_{156})/2$	1.000	0.85
121				

Table S5: Detailed vibrational assignment of 3NCA dimer by normal mode analysis based on SQM force field calculations

Experii	nental		ân	hp	
wavenu	imbers	Scaled	"IR	Raman	Characterization of normal
(cm	1 ⁻¹)	wavenumbers	intensity	intensity	modes with PED (%)
IR	Raman	(cm^{-1})			
		3103	0.0020	2.42	2 VCH (99)
		3066	0.0032	3.19	13VCH (99)
		3049	0.0025	1.43	VCH (99)
		3049	0.0025	1.43	VCH (99)
		3033	0.0022	0.844	VCH (99)
		1618	0.0689	78.2	vNO2as (59), VCC (14), bNO2ro (10)
		1615	0.0899	100	bCOH (41), VCCSUB (17), bOHO (16),
					vCO2as (10)
		1611	0.1170	61.2	VCCSUB (58), bCH (12), bCOH (11)
		1454	0.00299	22.3	bCOH (43), bOHO (39), vCO2as (11)
		1440	0.0208	3.72	bCOH (29), bOHO (19), bCH (19), VCC
		1435	0.0142	3.27	bCH (35), VCC (30), bCOH (12), bOHO
1308 s	1305	1313	0.0489	3.14	bCOH (28), bOHO (28), vCO2ss (12)
		1294	0.0182	1.90	14 VCC (58), bCH (10)
		1268	0.00418	0.706	3 bCH (61), VCCSUB (18)
		1226	0.00568	2.07	9b bCH (67)
		1192	0.0255	58.9	bCH (27), VCCSUB (21), vCO2ss (10),
		1154	0.00092	5.46	bCH (66), VCC (14)
		1153	0.00090	5.51	bCH (66), VCC (14)
1109 m	1110	1123	0.00081	0.811	18a bCH (80), VCC (18)

		1123	0.00081	0.811	18a bCH (80), VCC (18)
1076		1055	0.00778	2.53	VCC (41), bCH (36), VCN (13)
		1055	0.00778	2.53	VCC (41), bCH (37), VCN (13)
		1041	0.0107	0.842	bCH (46), VCC (38), VCN (10)
		1041	0.0107	0.842	bCH (46), VCC (38), VCN (10)
		1019	0.0148	0.759	gcH (89)
		1019	0.0148	0.759	gcH (52), tRtri (30), tRasy (13)
		1014	0.0234	0.578	tCCOH (66), bOHO (30)
1001 w	1001 s	1000	0.00328	0.613	gcH (85), tRtri (11)
		1000	0.00328	0.613	tRtri (47), tRsym (30), gcH (22)
973 w		968	0.00091	13.4	bRtri (64), VCC (32)
		968	0.00091	13.4	bRtri (64), VCC (32)
		950	0.00414	5.10	VCCSUB (35), vCO2ss (16), bCCC (15),
					bOHO (15)
935 m		948	0.00370	5.54	VCCSUB (42), bCCC (17), vCO2ss (13)
		932	0.000729	1.50	tRasy (59), tRtri (23), tRsym (10)
		910	0.00187	2.25	VCC (22), VCN (20), VCCSUB (16),
	909	910	0.00187	2.25	VCC (22), VCN (20), VCCSUB (15),
		891	0.00304	2.55	gcH (83), gCO2 (12)
		816	0.0115	1.02	tRasy (53), tRtri (33), gcH (10)
		812	0.0137	1.03	bNO2tw(55), VCC(10), bRtri(10)
		742	0.00268	0.427	tRtri (31), tRasy (20), gNO2 (18), gCO2
					(12)
		714	0.004780	0.289	tRasy (36), tRtri (32), gCO2 (11)
		682	0.000779	1.23	bCO2tw (38), bOHO (12), bRasy (12)
		669	0.00189	0.478	tRtri (54), tRasy (45)
		655	0.00313	1.54	bRasy (42), bCO2tw (19)
596 m		649	0.00149	3.30	bCO2tw (33), bRasy (29), bOHO (11)
		573	0.00226	0.405	bRsym (39), bCO2tw (20), bOHO (16
568 m		572	0.00219	0.428	bRsym (39), bCO2tw (23)
		544	0.00825	0.210	bCO2ro (22), bNO2ro (14), vOH (12),
					bOHO (12), bCCsub (10)

		522	0.00174	0.633	tRsym (25), tRtri (22), tRasy (17), gccsub
		521	0.00179	0.597	tRsym (34), tRtri (28), tRasy (11), gccsub
		500	0.0108	0.397	bNO2ro (37), bCO2ro (13), vOH (11),
					bCN (10)
487 m		489	0.00199	1.65	bNO2ro (29), bCO2ro (26), bCCC (17)
425 w	403	428	0.000240	0.180	tRsym (58), gCN (21)
	VW				
		424	0.000253	0.185	tRasy (53), tRsym (46)
405 w		385	0.00566	0.766	VCN (19), bRasy (19), vOH (16), bOHO
					(10)
		379	0.00263	1.78	VCN (38), bRasy (27)
		361	0.00521	0.509	vOH (21), bCCsub (17), bOHO (15)
	333	345	0.000570	2.96	vOH (25), bCCsub (15), bCO2ro (14),
	VW				VCCSUB (12)
		291	0.000154	7.91	vOH 52), bCCC (11)
	288 w	287	0.000191	6.25	tRasy (44), tRsym (40
	275 w	285	0.000204	4.74	tRasy (45), tRsym (43)
		255	0.00126	0.449	VCCSUB (22), bCCC (21), bCN (17),
					bRsym (13)
		240	0.00424	0.509	vOH (41), bCN (18), bCCC (15), bOHO (12)
	225 w	224	0.000427	1.63	bCOH (34), bOHO (29), bCN (16), bCCC (
					11)
	187 m	186	0.000101	3.00	tRasy (36), tOHO (14), tCCCC (13), tRsym
					(10)
		175	0.000229	4.47	tRasy (58), tRsym (21)
		167	0.000121	13.7	tRasy (53), tRsym (23)
		161	0.00011	8.66	tCO2 (28), tOHO (19), tCCCC (12), tRasy
					(11)
		153	0.00007	11.8	bCOH (37), vOH (35), bOHO (17)
		110	0.000574	3.46	tRasy (25), tOHO (12), tRtri (11), tCCOH
					(11)

104	0.00147	2.57	vOH (33), bCCsub (22), bOHO (11)
93	0.000347	2.83	tCCCC(29), gcH (14), tRasy (13), tOHO (12),
			gccsub (10)
74	0.000152	9.83	vOH (59), bOHO (11)
68	0.000244	10.4	tOHO (89)
60	0.000101	18.8	tRsym (31), tRasy (25), tNO2 (18)
49	0.000085	44.4	tRasy (35), tRsym (31), tNO2(13), tOHO
			(13)
44	0.000064	10.2	bCCC (38), bCOH (21), bCCsub (14), bOHO
			(10)
38	0.000052	25.1	tRasy (27), tCCCC (20), tRsym (19)
34	0.000052	18.4	tCCCC (49), tRsym (10), tCCOH (10
18	0.00015	17.5	bCCC (40), vOH (30), bCO2ro (13)
9	0.00042	8.67	tOHO (57), tCCCC (17)
8	0.00042	8.11	tOHO (31), tCCOH (26), tCCCC (19)

^aCalculated IR intensities.

^bRelative Raman intensities calculated by Eq. (1) and normalized to 100.

^cOnly PED contributions>10% are listed.

Abbreviations: vs - very strong, s - strong, m - medium, w - weak, vw - very weak, br- broad, sh- shoulder, v - stretching,

ss - symmetric stretching, as- asymmetric stretching, R- phenyl ring, b-bending, asy- asymmetric deformation,

tri- trigonal deformation, b-inplane bending, t- torsion, g- out of plane bending, W- wagging, bRtri- trigonal ring in-plane bending

bRasy- asymmetric ring in-plane bending, bRsy- symmetric ring in-plane bending, tRtri- trigonal ring torsion,

tRasy- asymmetric ring torsion, tRsym- symmetric ring torsion.