Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Information

Four MOFs with 2,2'-Dimethoxy-4,4'-biphenyldicarboxylic Acid:

Syntheses, Structures, Topologies, and Properties

 $Rui Luo,^{\dagger} Heng Xu,^{\dagger} Hao-Xue Gu,^{\dagger} Xin Wang,^{\dagger} Yan Xu,^{\dagger} Xuan Shen,^{\dagger} Weiwei Bao,^{\dagger} and Dun-Ru$

Zhu*^{,†,‡}

[†]State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China, [‡]State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

1					
Mn1-O1 ⁱ	2.123(3)	Mn1-O4	2.252(4)		
Mn1-O2	2.133(3)	Mn1-O4 ^{iv}	2.258(4)		
O1 ⁱ -Mn1-O1 ⁱⁱ	95.98(12)	O2-Mn1-O2 ⁱⁱⁱ	92.16(19)		
O1 ⁱ -Mn1-O2	178.05(15)	O2-Mn1-O4 ^{iv}	93.01(12)		
O1 ⁱ -Mn1-O2 ⁱⁱⁱ	85.92(11)	O4-Mn1-O4 ^{iv}	175.79(14)		
O1 ⁱ -Mn1-O4 ^{iv}	87.46(11)	Mn1-O4-Mn1 ⁱ	112.57(13)		
2					
Ni1-O4 ⁱ	2.044(2)	Ni2-O1	2.002(2)		
Ni1-07	2.092(2)	Ni2-O2W	2.088(2)		
Ni1-O1W	2.110(2)	Ni2-O1W	2.109(2)		

Table S1 Selected bond lengths (Å) and angles (°) for 1-4

Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2013

O4 ⁱ -Ni1-O7 ⁱⁱⁱ	90.48(16)	O1-Ni2-O1W	89.14(16)		
O4 ⁱ -Ni1-O1W	87.93(16)	O1-Ni2-O2W	91.83(17)		
O4 ⁱⁱ -Ni1-O1W	92.07(16)	O1-Ni2-O2W ^{iv}	88.16(17)		
O7-Ni1-O1W	91.03(16)	O2W-Ni2-O1W ^{iv}	91.00(17)		
		3			
Cu1-O1	1.959(2)	Cu1-O1W	2.120(4)		
Cu1-O2 ⁱⁱⁱ	1.966(2)	$Cu1\cdots Cu1^{iii}$	2.5910(11)		
O1-Cu1-O1 ⁱ	89.33(17)	O1-Cu1-O1W	95.63(14)		
O1-Cu1-O2 ⁱⁱ	89.80(12)	O2 ⁱⁱ -Cu1-O2 ⁱⁱⁱ	88.95(15)		
O1-Cu1-O2 ⁱⁱⁱ	168.98(11)	O2 ⁱⁱ -Cu1-O1W	95.39(14)		
4					
Cd1-O1	2.370(4)	Cd2-O4 ⁱⁱ	2.302(4)		
Cd1-O2	2.404(4)	Cd2-O8	2.302(4)		
Cd1-O3 ⁱⁱ	2.361(4)	Cd2-O10 ⁱ	2.211(3)		
Cd1-O4 ⁱⁱ	2.537(4)	Cd3-O13	2.302(6)		
Cd1-O7	2.382(4)	Cd3-O14	2.501(7)		
Cd1-O8	2.431(4)	Na1-O1	2.301(5)		
Cd1-O9 ⁱ	2.181(4)	Na1-O7	2.369(5)		
Cd1····Cd2	3.601(4)	Cd1…Na1	3.6602(5)		
O1-Cd1-O2	55.00(15)	O4 ⁱⁱ -Cd2-O4 ^{iv}	95.88(19)		
O1-Cd1-O3 ⁱⁱ	110.60(15)	O4 ⁱⁱ -Cd2-O8	81.38(13)		
O1-Cd1-O4 ⁱⁱ	163.09(14)	O4 ⁱⁱ -Cd2-O8 ^v	175.06(14)		
O1-Cd1-O7	77.20(16)	O4 ⁱⁱ -Cd2-O10 ⁱ	85.24(14)		
O1-Cd1-O8	118.71(14)	O4 ⁱⁱ -Cd2-O10 ⁱⁱⁱ	92.62(14)		
O1-Cd1-O9 ⁱ	103.96(15)	O8-Cd2-O8 ^v	101.6(2)		
O2-Cd1-O3 ⁱⁱ	86.80(16)	O8-Cd2-O10 ⁱ	91.25(14)		
O2-Cd1-O4 ⁱⁱ	114.71(13)	O10 ⁱ -Cd2-O10 ⁱⁱⁱ	176.8(2)		
O2-Cd1-O7	128.91(16)	O13-Cd3-O13 ^{vi}	121.3(3)		
O2-Cd1-O8	166.16(14)	O13-Cd3-O13 ^{vii}	103.88(14)		

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

O2-Cd1-O9 ⁱ	85.03(15)	O13-Cd3-O14	52.3(2)
O3 ⁱⁱ -Cd1-O4 ⁱⁱ	53.05(13)	O13-Cd3-O14 ^{vi}	83.0(2)
O3 ⁱⁱ -Cd1-O7	95.04(18)	O13-Cd3-O14 ^{vi}	152.9(2)
O3 ⁱⁱ -Cd1-O8	106.99(15)	O13-Cd3-O14 ^{viii}	81.1(2)
O3 ⁱⁱ -Cd1-O9 ⁱ	130.49(17)	O14-Cd3-O14 ^{vi}	82.9(4)
O4 ⁱⁱ -Cd1-O7	106.38(15)	O14-Cd3-O14 ^{vii}	124.2(2)
O4 ⁱⁱ -Cd1-O8	74.30(12)	O1-Na1-O1 ^{ix}	106.9(3)
O7-Cd1-O8	52.68(15)	O1-Na1-O7	78.81(14)
O7-Cd1-O9 ⁱ	127.04(19)	O1-Na1-O7 ^{ix}	155.13(17)
O8-Cd1-O9 ⁱ	84.97(15)	O7-Na1-O7 ^{ix}	106.5(3)

Symmetry codes: for **1**: i) 1.5-*x*, 2.5-*y*, 0.5+*z*; ii) *x*, 2.5-*y*, 0.5+*z*; iii) 1.5-*x*, *y*, *z*; iv) 1.5-*x*, 2.5-*y*, *z*-0.5. for **2**: i) *x*, *y*-1, *z*-1; ii) 1-*x*, 2-*y*, 3-*z*; iii) 1-*x*, 1-*y*, 2-*z*; iv) -*x*, 1-*y*, 2-*z*. for **3**: i) *x*-0.5, 0.5+*y*, *z*; ii) 0.5-*x*, 0.5-*y*, -*z*; iii) 1-*x*, -*y*, -*z*. for **4**: i) -*x*, -0.5-*y*, *z*-0.25; ii) -0.5-*x*, -1-*y*, 0.25+*z*; iii) *x*-0.5, -0.5-*y*, -1.5-*z*; iv) *x*, -1-*y*, -2-*z*; v) *x*, -0.5-*y*, -1.75-*z*; vi) -*x*, -*y*, *z*; viii) *x*, -*y*, -1-*z*; ix) -*x*, -1-*y*, *z*.

Fig. S1 The asymmetric unit of 1 (Hydrogen atoms are omitted for clarity).

Fig. S2 The asymmetric unit of 2 (Hydrogen atoms are omitted for clarity).

Fig. S3 The asymmetric unit of 3 (Hydrogen atoms are omitted for clarity).

Fig. S4 The asymmetric unit of 4 (Hydrogen atoms are omitted for clarity).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Fig. S5 The IR spectra of 1.

Fig. S6 The IR spectra of 2.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Fig. S7 The IR spectra of 3.

Fig. S8 The IR spectra of 4.

Fig. S9 The P-XRD patterns of 1.

Fig. S10 The P-XRD patterns of 2.

Fig. S12 The P-XRD patterns of 4.

Fig. S13 The TGA curve for 1.

Fig. S14 The TGA curve for 2.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Fig. S15 The TGA curve for 3 (top). The P-XRD patterns of the final residues (bottom).

Fig. S16 The TGA curve for 4 (top). The P-XRD patterns of the final residues (bottom).

Fig. S17 The variable temperature PXRD patterns of 3.

Fig. S18 (a) As-synthesized 4. (b)-(d) Photos of 4 after soaked in DMF solutions of three kinds of dyes.