Supporting Information

for

Selectivity epichlorohydrin-sensing performance of Ag nanoparticles decorated porous SnO₂ architectures

Zhenglin Zhang,^{*a, b*} Haiyan Song,^{*b*} Shishu Zhang,^{*b*} Junyan Zhang,^{*b*} Wenya Bao,^{*b*} Quanqin Zhao,^{*a, b*} Xiang Wu,^{*a, b*}

 ^a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China. Tel: +86-0451-8806-0570; E-mail: wuxiang05@gmail.com
^b Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University,

^b Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of Chemistry, Shandong University, Jinan, 250100, Shandong, P. R. China. E-mail: zhaoqq@sdu.edu.cn

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2013

Fig. S1 The structural formulae of Epichlorohydrin.

Fig. S2 Morphology of the as-synthesized porous SnO_2 MFs, SEM image at low magnification.

Fig. S3. XRD of 10% Ag NPs decorated porous SnO₂ MFs before and after the heat treatment at 180 $^\circ$ C in air for 24 h.