Supplementary Information

Ge(1)-O(10)	1.720(8)	V(5)-V(15)	3.057(3)
Ge(1)-O(29)	1.733(7)	V(6)-O(23)	1.599(7)
Ge(1)-O(48)	1.744(7)	V(6)-O(26)	1.929(8)
Ge(1)-O(22)	1.753(8)	V(6)-O(36)	1.956(8)
Ge(2)-O(37)	1.707(7)	V(6)-O(27)	1.990(8)
Ge(2)-O(47)	1.748(7)	V(6)-O(48)	2.004(8)
Ge(2)-O(15)	1.753(7)	V(6)-V(8)	3.035(3)
Ge(2)-O(31)	1.757(8)	V(7)-O(9)	1.594(8)
Ge(3)-O(19)	1.700(7)	V(7)-O(40)	1.915(8)
Ge(3)-O(27)	1.750(8)	V(7)-O(34)	1.943(8)
Ge(3)-O(41)	1.759(7)	V(7)-O(1)	1.944(8)
Ge(3)-O(20)	1.768(8)	V(7)-O(15)	2.066(8)
Ge(4)-O(42)	1.709(7)	V(7)-V(11)	2.868(3)
Ge(4)-O(45)	1.744(7)	V(7)-V(9)	3.066(3)
Ge(4)-O(7)	1.746(8)	V(8)-O(16)	1.618(8)
Ge(4)-O(20)	1.763(7)	V(8)-O(35)	1.916(7)
Ge(5)-O(3)	1.722(9)	V(8)-O(26)	1.936(8)
Ge(5)-O(18)	1.745(7)	V(8)-O(27)	1.993(8)
Ge(5)-O(31)	1.751(7)	V(8)-O(7)	2.030(8)
Ge(5)-O(13)	1.767(7)	V(9)-O(2)	1.629(8)
Ge(6)-O(11)	1.687(8)	V(9)-O(40)	1.881(8)
Ge(6)-O(38)	1.747(8)	V(9)-O(12)	1.937(7)
Ge(6)-O(5)	1.750(8)	V(9)-O(13)	1.981(8)
Ge(6)-O(29)	1.785(7)	V(9)-O(15)	2.051(7)
V(1)-O(8)	1.607(8)	V(9)-V(10)	3.035(3)
V(1)-O(35)	1.910(8)	V(10)-O(4)	1.590(9)
V(1)-O(40)	1.935(7)	V(10)-O(12)	1.920(9)
V(1)-O(12)	1.963(8)	V(10)-O(30)	1.958(8)
V(1)-O(7)	2.043(8)	V(10)-O(45)	1.988(7)
V(1)-V(9)	2.903(3)	V(10)-O(13)	2.004(7)
V(1)-V(8)	3.061(3)	V(10)-V(13)	3.028(3)
V(2)-O(21)	1.602(7)	V(11)-O(14)	1.583(8)
V(2) - O(1)	1.91/(8)	V(11) - O(34)	1.899(8)
V(2) - O(28)	1.941(8)	V(11)-O(1)	1.938(8)
V(2) - O(3)	1.999(8)	V(11)-O(22) V(11)-O(5)	1.980(8)
V(2)-O(4/) V(2) V(11)	2.003(8) 2.010(2)	V(11) - O(3) V(12) - O(24)	1.997(8)
V(2)-V(11) V(2) $V(15)$	3.019(3)	V(12) - O(24) V(12) - O(20)	1.390(8) 1.003(7)
V(2) - V(13) V(3) O(6)	3.037(3)	V(12) - O(39) V(12) - O(46)	1.903(7) 1.047(8)
V(3) - O(0) V(3) - O(35)	1.300(8)	V(12) - O(40) V(12) - O(36)	1.94/(8)
V(3) - O(33) V(3) - O(34)	1.921(8) 1.942(8)	V(12) - O(30) V(12) - O(41)	1.940(0) 2.027(8)
V(3) - O(34) V(3) - O(26)	1.942(8) 1.045(8)	V(12) - O(41) V(12) - V(13)	2.027(8) 3.064(3)
V(3) - O(20) V(3) - O(22)	1.943(8) 2.014(8)	V(12) - V(13) V(13) O(25)	1.586(8)
V(3) - O(22) V(3) - V(8)	2.014(3) 2.860(3)	V(13)-O(23)	1.380(8) 1.921(7)
V(3) - V(3) V(3) - V(11)	2.009(3) 3.057(3)	V(13)-O(46)	1.921(7) 1.922(7)
V(4)-O(33)	1 615(8)	V(13) - O(41)	1.922(7) 1.985(7)
V(4) - O(39)	1 908(7)	V(13) - O(45)	203(8)
V(4)-O(36)	1 038(8)	V(14)-O(17)	2.035(8) 1 589(8)
V(4)-O(38)	2 008(7)	V(14) - O(39)	1.337(3) 1 942(7)
V(4)-O(48)	2.000(7) 2.015(8)	V(14) - O(44)	1.942(7) 1.949(8)
V(4)-V(12)	2.013(0) 2.877(3)	V(14) - O(28)	1 951(8)
V(4)-V(6)	$\frac{2.077(3)}{3.038(3)}$	V(14)-O(38)	2.015(8)
V(4)-V(14)	3 053(3)	V(14)-V(15)	2.873(3)
V(5)-O(32)	1.603(8)	V(15)-O(43)	1.590(7)

Table S1: Selected Bond lengths [Å] for compound 1. Estimated standard deviations are given in parentheses.

Picture: $\{V_{15}Ge_6\}$ cluster in 1 with atoms labelling for V and Ge

Table	S2:	Selected	bond	lengths	(Å)	for	2.	Estimated	standard	deviations	are	given	in
parenth	neses												

1.693(4)	V(3)-V(5)	2.8382(13)
1.762(4)	V(3)-V(4)	3.0199(14)
1.769(5)	V(4)-O(12)	1.606(5)
1.784(4)	V(4)-O(10)	1.925(4)
1.729(4)	V(4)-O(3)	1.932(4)
1.743(4)	V(4)-O(9)	1.998(4)
1.750(4)	V(4)-O(2)	2.015(4)
1.762(3)	V(4)-V(1)#1	3.0292(14)
1.729(4)	V(5)-O(13)	1.617(4)
1.737(4)	V(5)-O(7)	1.910(4)
1.747(4)	V(5)-O(15)	1.938(4)
1.761(4)	V(5)-O(10)	1.946(4)
1.622(5)	V(5)-O(14)	2.026(4)
1.890(4)	V(5)-V(6)	3.0703(13)
1.926(4)	V(6)-O(18)	1.615(4)
1.994(4)	V(6)-O(15)	1.910(4)
1.995(4)	V(6)-O(16)#1	1.944(4)
2.8697(14)	V(6)-O(17)#1	1.998(4)
3.0292(14)	V(6)-O(14)	2.002(4)
3.0384(14)	V(6)-V(7)	2.8942(15)
1.604(4)	V(6)-V(8)	3.0285(11)
1.935(4)	V(7)-O(19)	1.609(4)
	$\begin{array}{c} 1.693(4)\\ 1.762(4)\\ 1.769(5)\\ 1.784(4)\\ 1.729(4)\\ 1.743(4)\\ 1.750(4)\\ 1.750(4)\\ 1.762(3)\\ 1.729(4)\\ 1.737(4)\\ 1.747(4)\\ 1.747(4)\\ 1.622(5)\\ 1.890(4)\\ 1.926(4)\\ 1.995(4)\\ 2.8697(14)\\ 3.0292(14)\\ 3.0384(14)\\ 1.604(4)\\ 1.935(4) \end{array}$	$\begin{array}{c ccccc} 1.693(4) & V(3)-V(5) \\ 1.762(4) & V(3)-V(4) \\ 1.769(5) & V(4)-O(12) \\ 1.784(4) & V(4)-O(10) \\ 1.729(4) & V(4)-O(3) \\ 1.743(4) & V(4)-O(9) \\ 1.750(4) & V(4)-O(2) \\ 1.762(3) & V(4)-V(1)\#1 \\ 1.729(4) & V(5)-O(13) \\ 1.737(4) & V(5)-O(13) \\ 1.737(4) & V(5)-O(15) \\ 1.761(4) & V(5)-O(10) \\ 1.622(5) & V(5)-O(14) \\ 1.890(4) & V(5)-V(6) \\ 1.926(4) & V(6)-O(18) \\ 1.995(4) & V(6)-O(16)\#1 \\ 2.8697(14) & V(6)-O(14) \\ 1.30292(14) & V(6)-V(1) \\ 1.604(4) & V(6)-V(8) \\ 1.935(4) & V(7)-O(19) \\ \end{array}$

V(2)-O(4)	1.942(4)	V(7)-O(4)	1.933(4)				
V(2)-O(3)#1	1.950(4)	V(7)-O(15)	1.947(4)				
V(2)-O(6)#1	2.030(4)	V(7)-O(16)#1	1.959(4)				
V(2)-V(3)	3.0949(15)	V(7)-O(1)	2.025(4)				
V(3)-O(11)	1.605(4)	V(8)-O(20)	1.615(6)				
V(3)-O(7)	1.911(4)	V(8)-O(16)#1	1.928(4)				
V(3)-O(10)	1.933(4)	V(8)-O(16)	1.928(4)				
V(3)-O(9)	2.005(4)	V(8)-O(17)#1	1.988(4)				
V(3)-O(6)#1	2.030(4)	V(8)-O(17)	1.988(4)				
		V(8)-V(6)#1	3.0285(11)				
Symmetry transformations used to generate equivalent atoms:							
#1 -x+1,y,-z+1/2	#1 -x+1,y,-z+1/2 #2 x+1/2,y-1/2,z #3 x-1/2,y+1/2,z						

Picture: $\{V_{15}Ge_6\}$ cluster in ${\bm 2}$ with atoms labelling for V and Ge

Table S3:	Bond vale	nce sums	of the	germanium	and	vanadium	atoms i	in 1	and 2.
-----------	-----------	----------	--------	-----------	-----	----------	---------	------	--------

	Comp	ound 1			Compo	ound 2	
Ge1	4.49	V1	3.99	Ge1	4.34	V1	3.99
Ge2	4.45	V2	3.99	Ge2	4.39	V2	3.98
Ge3	4.42	V3	4.21	Ge3	4.42	V3	3.95
Ge4	4.46	V4	3.92			V4	3.95
Ge5	4.39	V5	4.19			V5	3.99
Ge6	4.45	V6	3.96			V6	3.94
		V7	4.02			V7	3.94
		V8	3.90			V8	3.97
		V9	3.91				
		V10	4.02				
		V11	4.14				
		V12	4.10				
		V13	4.06				
		V14	4.04				
		V15	4.00				
Ge(average)	4.44	V(average)	4.03	Ge(average)	4.38	V(average)	3.96

O(11)-Mn(3)	2.026(9)	O(37)#2-Mn(1)-O(42)	81.9(3)	N(22)-Mn(2)-Mn(1)	85.4(3)		
O(19)-Mn(4)	1.992(9)	O(37)#2-Mn(1)-N(12)	93.7(4)	O(37)#2-Mn(2)-Mn(1)	42.1(2)		
O(32)-Mn(5)	2.258(8)	O(42)-Mn(1)-N(12)	157.5(4)	N(23)-Mn(2)-Mn(1)	114.9(3)		
O(37)-Mn(1)#1	2.109(8)	O(37)#2-Mn(1)-N(14)	91.8(4)	N(21)-Mn(2)-Mn(1)	158.2(3)		
O(37)-Mn(2)#1	2.297(7)	O(42)-Mn(1)-N(14)	101.8(3)	O(11)-Mn(3)-N(32)	103.3(4)		
O(42)-Mn(2)	2.141(8)	N(12)-Mn(1)-N(14)	100.4(4)	O(11)-Mn(3)-N(33)	104.6(4)		
O(42)-Mn(1)	2.196(8)	O(37)#2-Mn(1)-N(11)	165.9(4)	N(32)-Mn(3)-N(33)	111.6(4)		
Mn(1)-O(37)#2	2.109(8)	O(42)-Mn(1)-N(11)	109.8(4)	O(11)-Mn(3)-N(34)	99.9(5)		
Mn(1)-N(12)	2.246(12)	N(12)-Mn(1)-N(11)	78.5(4)	N(32)-Mn(3)-N(34)	107.1(5)		
Mn(1)-N(14)	2.251(12)	N(14)-Mn(1)-N(11)	78.3(4)	N(33)-Mn(3)-N(34)	127.2(5)		
Mn(1)-N(11)	2.316(13)	O(37)#2-Mn(1)-N(13)	118.9(4)	O(11)-Mn(3)-N(31)	178.7(4)		
Mn(1)-N(13)	2.518(13)	O(42)-Mn(1)-N(13)	74.6(4)	N(32)-Mn(3)-N(31)	76.6(5)		
Mn(1)-Mn(2)	3.145(3)	N(12)-Mn(1)-N(13)	88.7(4)	N(33)-Mn(3)-N(31)	76.7(4)		
Mn(2)-N(24)	2.236(11)	N(14)-Mn(1)-N(13)	147.5(5)	N(34)-Mn(3)-N(31)	78.9(5)		
Mn(2)-N(22)	2.281(10)	N(11)-Mn(1)-N(13)	73.0(5)	O(19)-Mn(4)-N(44)	101.6(5)		
Mn(2)-O(37)#2	2.297(7)	O(37)#2-Mn(1)-Mn(2)	46.9(2)	O(19)-Mn(4)-N(42)	99.7(5)		
Mn(2)-N(23)	2.330(10)	O(42)-Mn(1)-Mn(2)	42.8(2)	N(44)-Mn(4)-N(42)	113.9(5)		
Mn(2)-N(21)	2.368(12)	N(12)-Mn(1)-Mn(2)	120.6(3)	O(19)-Mn(4)-N(43)	104.0(4)		
Mn(3)-N(32)	2.146(11)	N(14)-Mn(1)-Mn(2)	119.4(3)	N(44)-Mn(4)-N(43)	110.9(6)		
Mn(3)-N(33)	2.214(10)	N(11)-Mn(1)-Mn(2)	147.1(3)	N(42)-Mn(4)-N(43)	123.0(6)		
Mn(3)-N(34)	2.257(13)	N(13)-Mn(1)-Mn(2)	80.4(3)	O(19)-Mn(4)-N(41)	177.6(5)		
Mn(3)-N(31)	2.335(13)	O(42)-Mn(2)-N(24)	96.9(4)	N(44)-Mn(4)-N(41)	79.4(6)		
Mn(4)-N(44)	2.164(17)	O(42)-Mn(2)-N(22)	120.0(4)	N(42)-Mn(4)-N(41)	77.9(6)		
Mn(4)-N(42)	2.190(14)	N(24)-Mn(2)-N(22)	138.6(4)	N(43)-Mn(4)-N(41)	77.7(5)		
Mn(4)-N(43)	2.237(12)	O(42)-Mn(2)-O(37)#2	78.9(3)	N(62)-Mn(5)-N(52)	98.2(6)		
Mn(4)-N(41)	2.321(14)	N(24)-Mn(2)-O(37)#2	90.3(3)	N(62)-Mn(5)-N(53)	105.7(7)		
Mn(5)-N(62)	2.213(18)	N(22)-Mn(2)-O(37)#2	80.1(3)	N(52)-Mn(5)-N(53)	98.4(6)		
Mn(5)-N(52)	2.229(15)	O(42)-Mn(2)-N(23)	87.4(4)	N(62)-Mn(5)-O(32)	86.4(5)		
Mn(5)-N(53)	2.250(18)	N(24)-Mn(2)-N(23)	112.5(4)	N(52)-Mn(5)-O(32)	172.6(5)		
Mn(5)-N(54)	2.258(19)	N(22)-Mn(2)-N(23)	88.8(4)	N(53)-Mn(5)-O(32)	85.9(4)		
Mn(5)-N(51)	2.308(14)	O(37)#2-Mn(2)-N(23)	154.7(4)	N(62)-Mn(5)-N(54)	101.3(7)		
		O(42)-Mn(2)-N(21)	156.9(4)	N(52)-Mn(5)-N(54)	93.8(6)		
		N(24)-Mn(2)-N(21)	76.9(4)	N(53)-Mn(5)-N(54)	148.3(7)		
		N(22)-Mn(2)-N(21)	75.1(4)	O(32)-Mn(5)-N(54)	79.5(5)		
		O(37)#2-Mn(2)-N(21)	122.9(4)	N(62)-Mn(5)-N(51)	176.0(6)		
		N(23)-Mn(2)-N(21)	74.9(4)	N(52)-Mn(5)-N(51)	78.0(5)		
		O(42)-Mn(2)-Mn(1)	44.2(2)	N(53)-Mn(5)-N(51)	76.3(6)		
		N(24)-Mn(2)-Mn(1)	113.7(3)	O(32)-Mn(5)-N(51)	97.3(4)		
				N(54)-Mn(5)-N(51)	77.8(6)		
Symmetry transformations used to generate equivalent atoms: $\#1 - x+2$, $y+1/2 - z+1/2 = \#2 - x+2$, $y-1/2 - z+1/2$							

Table S4: Selected bond lengths (Å) and the angles (°) around the Mn^{2+} cations in **1**. Estimated standard deviations are given in parentheses.

Table S5: Selected bond lengths (Å) and the angles (°) around the Ni^{2+} cations in **2**. Estimated standard deviations are given in parentheses.

$N_{i}(1) N(1)$	2077(7)	N(4) N(1) N(2)	05.6(2)
N(1) - N(1)	2.077(7)	IN(4) - INI(1) - IN(5)	93.0(3)
Ni(1)-N(4)	2.082(8)	N(22')-Ni(1)-N(3)	108.6(7)
Ni(1)-N(22')	2.10(2)	N(2)-Ni(1)-N(3)	163.8(3)
Ni(1)-N(2)	2.105(6)	O(5)#2-Ni(1)-N(3)	83.8(3)
Ni(1)-O(5)#2	2.121(5)	N(1)-Ni(1)-N(22)	169.6(4)
Ni(1)-N(3)	2.135(7)	N(4)-Ni(1)-N(22)	106.9(4)
Ni(1)-N(22)	2.192(10)	N(22')-Ni(1)-N(22)	22.1(6)
Ni(2)-N(11)	2.083(6)	N(2)-Ni(1)-N(22)	95.5(3)
Ni(2)-N(12)	2.088(6)	O(5)#2-Ni(1)-N(22)	78.9(3)
Ni(2)-N(23)	2.092(6)	N(3)-Ni(1)-N(22)	96.7(4)
Ni(2)-N(14)	2.100(6)	N(11)-Ni(2)-N(12)	84.0(3)
Ni(2)-N(13)	2.120(6)	N(11)-Ni(2)-N(23)	176.7(2)
Ni(2)-O(13)	2.157(4)	N(12)-Ni(2)-N(23)	98.0(3)

		N(11)-Ni(2)-N(14)	84.0(2)			
N(1)-Ni(1)-N(4)	83.5(3)	N(12)-Ni(2)-N(14)	95.6(3)			
N(1)-Ni(1)-N(22')	166.5(7)	N(23)-Ni(2)-N(14)	98.4(2)			
N(4)-Ni(1)-N(22')	87.1(7)	N(11)-Ni(2)-N(13)	82.4(3)			
N(1)-Ni(1)-N(2)	84.1(2)	N(12)-Ni(2)-N(13)	163.0(3)			
N(4)-Ni(1)-N(2)	91.0(3)	N(23)-Ni(2)-N(13)	95.1(3)			
N(22')-Ni(1)-N(2)	86.4(7)	N(14)-Ni(2)-N(13)	93.1(3)			
N(1)-Ni(1)-O(5)#2	90.7(2)	N(11)-Ni(2)-O(13)	92.13(19)			
N(4)-Ni(1)-O(5)#2	174.2(3)	N(12)-Ni(2)-O(13)	84.1(2)			
N(22')-Ni(1)-O(5)#2	98.6(7)	N(23)-Ni(2)-O(13)	85.5(2)			
N(2)-Ni(1)-O(5)#2	88.1(2)	N(14)-Ni(2)-O(13)	176.1(2)			
N(1)-Ni(1)-N(3)	82.0(3)	N(13)-Ni(2)-O(13)	86.2(2)			
Symmetry transformations used to generate equivalent atoms:						
#1 -x+2,y+1/2,-z+1/2	#2 -x+2,y-1/2	,-z+1/2				

Figure S1: Layer representation of the structure of compound 1.

Figure S2: IR spectrum of [$\{Mn(tren)(trenH_2)\}$ $\{Mn(tren)\}_4V_{15}Ge_6O_{48}(H_2O)_{0.5}$]·(tren)·2H₂O (1, black) and [$\{Ni(tren)\}_4(trenH_2)_2V_{15}Ge_6O_{48}(H_2O)$]·2H₂O (2, red).

Figure S3: The structure of **2** in the ac plane with numbered Ni^{2+} cations. All H atoms und lattice water molecules are omitted for clarity.

Figure S4: X-ray powder patterns recorded during thermal decomposition of **1** from 100 to 350°C.

Figure S5: In-situ X-ray powder patterns recorded during thermal decomposition of 1 from 100 to 350 °C.

Figure S6: X-ray powder patterns after treatment of the heated compound with different solvents.