Co-crystal formation with 1,2,3,5-dithiadiazolyl radicals

Sean W. Robinson,^a Delia A. Haynes^a* and Jeremy M. Rawson^b

a Department of Chemistry and Polymer Science, University of Stellenbosch, P. Bag X1, Matieland, 7602, South Africa; E-mail: dhaynes@sun.ac.za b Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada, N9B 3P4

Electronic Supplementary Information

Powder X-ray diffraction

Powder X-ray diffraction patterns were collected on a PANalytical X'Pert PRO diffractometer in Bragg-Brentano geometry using an X'Celerator detector and Cu radiation source with a Ni filter. Samples were spun during data collection. Powder patterns were simulated and visualised in X'Pert HighScore Plus.¹ In all powder diffraction patterns, the *y*-axis gives intensity counts in arbitrary units.

Fig. S1 Experimental and simulated PXRD patterns of 1

Fig. S2 Experimental and simulated PXRD patterns of 2

Fig. S3 Experimental and simulated PXRD patterns of 3

Fig. S4 PXRD for a ground mixture of 1 and 2, showing that the product is a mixture of 1 and 2, not co-crystal 4.

Fig. S5 PXRD for a ground mixture of 1 and 3, showing that the product is a mixture of 1 and 3, not co-crystal 5.

Attempted synthesis of further co-crystals

Table S1 Combinations of co-crystal	l formers used in attempts to	produce DTDA-containing	co-crystals
Tuble D1 Combinations of co crysta	ronnens asea in allempts to	produce b rbrr containing	Jo er jotalo

co-crystal former 1	co-crystal former 2	result
S = N S = N	S = N S = N F F F	crystals of 4
	S = N S = N S = N F F	crystals of 5
	S = N S = N S = N	crystals of co-crystal former 1
	S = N S = N F F F F	multiple crystal forms – needles, blocks blocks are co-crystal former 1
	S = N S = N F F F F F	crystals of co-crystal former 1 two separate bands of crystals
	F F F F	crystals of dithiatetrazocine – unwanted product
	NCСООН	no crystals
	NC	components crystallised separately
		components crystallised separately

Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) was was carried out using a TA Instruments Q100 system under a N_2 gas purge, with a flow rate of 50.0 ml min⁻¹. The ramp rate was 10 °C min⁻¹, and the cooling rate was 5 °C min⁻¹. Samples were placed in aluminium pans that were non-hermetically sealed with non-vented aluminium lids. Analysis was carried out using TA Instruments Universal Analysis 2000.²

Fig. S13 Thermodynamic estimate of ΔH_{rxn} for formation of co-crystal 5 from (1)₂ and (3)₂.

References

- 1 X'Pert HighScore Plus, 2009, PANalytical B. V., Almelo, The Netherlands.
- 2 TA Instruments Universal Analysis 2000 version 4.7A, 1998-2009, TA Instruments Waters LLC.