Electronic Supplementary Information for MS:

Solid State Structural Transformation of 1D to Intermediate 2D and then to 3D Porous Coordination Polymer by Anion Replacement; New Precursors for Preparation of PbCl₂, Pb₃O₂Cl₂ and PbO Nanoparticles

Lida Hashemi^a, Ali Morsali^{a*}

^aDepartment of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran

‡ Experimental section:

Synthesis of coordination polymers 1, 2 and 3 with branched tube method:

Single crystals of compound **1** suitable for X-ray diffraction were prepared by a thermal gradient method in branched tube. The ligand 4-bpdh (1 mmol, 0.238g), lead(II) nitrate (0.331g, 1mmol) and KCl (2 mmol 0.150g) were placed in the main arm of a branched tube. Methanol was carefully added to fill both arms. The tube was sealed and the ligand-containing arm immersed in an oil bath at 60°C while the other arm was kept at ambient temperature. After one week, crystals deposited in the cooler arm that were isolated, filtered off and dried. M.p =250 °C. Found; C, 32.51; H, 2.70; N, 10.86%, calculated for $C_{14}H_{14}Cl_2N_4Pb$; C, 32.53; H, 2.71; N, 10.84%. IR (cm⁻¹) selected bonds: v = 574(w), 821(s), 1062(m), 1217(w), 1291(w), 1415(m), 1600(vs) and 3435(m).

Single crystals of compound **2** suitable for X-ray diffraction were prepared by a thermal gradient method in branched tube. The ligand 4-bpdh (1 mmol, 0.238g), lead(II) nitrate (0.331g, 1mmol) and KCl (1 mmol 0.075g) were placed in the main arm of a branched tube. Methanol was carefully added to fill both arms. The tube was sealed and the ligand-containing arm immersed in an oil bath at 60°C while the other arm was kept at ambient temperature. After four days, crystals deposited in the cooler arm that were isolated, filtered off and dried. M.p =270 °C. Found; C, 30.74; H, 2.40; N, 12.85%, calculated for $C_{14}H_{14}ClN_5O_3Pb$; C, 30.94; H, 2.58; N, 12.89%. IR (cm⁻¹) selected bonds: v = 576(m), 824(s), 1059(w), 1297(m), 1394(s), 1590(vs) and 3031(w).

Single crystals of compound **3** suitable for X-ray diffraction were prepared by a thermal gradient method in branched tube. The ligand 4-bpdh (1 mmol, 0.238g) and lead(II) nitrate (0.331g, 1mmol) were placed in the main arm of a branched tube. Methanol was carefully added to fill both arms. The tube was sealed and the ligand-containing arm immersed in an oil bath at 60°C while the other arm was kept at ambient temperature. After 2-3 days, crystals deposited in the cooler arm that were isolated, filtered off and dried. M.p =290 °C. Found; C, 28.65; H, 2.40; N, 14.35%, calculated for $C_{14}H_{14}C_{10}N_6O_7Pb$; C, 28.69; H, 2.39; N, 14.34%. IR (cm⁻¹) selected bonds: v = 575(w), 825(s), 1055(m), 1293(s), 1372(vs), 1544(w), 1599(s) and 3384(m).

Synthesis of coordination polymers 1, 2 and 3 with mechanochemical maner:

In mechanochemical manner compound 1 could be synthesized from grinding of row materials for 20 minutes in an agate mortar. Compound 2 and 3 could be synthesized from grinding of 1mmol of compound 1 with 1 and 2 mmol of NaNO₃ respectively and these processes could be reversible by using of 1 and 2 mmol KCl for converting compound 3 to 2 and 1 respectively. For purification of coordination polymers with mechanochemical maner after each stage washing with water, thrice time, has been done until extra NaNO₃ or KCl removed.

Synthesis of PbCl₂, Pb₃O₂Cl₂ and PbO nanoparticles by thermal decomposition of coordination polymers 1, 2 and 3, respectively, at oleic acid as a surfactant:

Precursors 1-3 (0.1 mmol) were dispersed in oleic acid (1.58 ml) to form homogenous emulsion solutions. These solutions were degassed for 20 min and then heated to 190 °C for 2 h. At the end of the reaction, black precipitates for precursor 1-3 were formed. A small amount of toluene and a large excess of EtOH were added to the all of three reaction solutions and PbCl₂, Pb₃O₂Cl₂ and PbO nanoparticles were separated by centrifugation for the precursors 3, 2 and 1, respectively. The solids were washed with EtOH and dried under air atmosphere (yield: 63, 60 and 64% for PbCl₂, Pb₃O₂Cl₂ and PbO respectively).

Orthorhombic PbO structure with the lattice parameters of a = 5.4903Å, c = 4.7520Å, Z = 4 and S.G = Pcam which are in JCPDS card file No. 38-1477; Orthorhombic Pb₃O₂Cl₂ with a = 9.52Å, z = 4 and S.G = P2₁2₁2₁ which are in JCPDS card file No. 23-0332; PbCl₂ with the lattice parameters (a = 7.6222(5) Å, b = 9.0448(7) Å, c = 4.5348(4) Å, S.G. = Pnam (62) and z = 4) which are in JCPDS card file No. 26-1150.

Identification code	1	2
Empirical formula	C_{14} H ₁₄ Cl ₂ N ₄ Pb	C ₁₄ H ₁₄ ClN ₅ O ₃ Pb
Formula weight	516.39	542.94
Temperature(K)	293(2)	291(2)
Wavelength	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$
Unit cell dimensions	a = 12.805(1) Å	a = 14.0972(11)Å
	b = 4.0989(3) Å	b = 8.2977(8)Å
	c = 16.246(1) Å	c = 15.9525(14)Å
	$\beta = 96.729(1)^{\circ}$	$\beta = 104.203(7)^{\circ}$
Volume	846.8(1) Å3	1809.0(3)Å ³
Ζ	2	4
Density (calculated)	2.025 Mg/m3	1.994 g/m^3
F(000)	484	1024
Theta range for data collection	1.60 to 26.00°	2.45 to 27.48 °
Index ranges	$-15 \le h \le 15$	$-17 \le h \le 17$
	$-5 \le k \le 4$	$-10 \le k \le 10$
	$-20 \le l \le 20$	$-16 \le l \le 20$
Reflections collected	6148	3532
Independent reflections	1654	2575
Absorption correction	multi-scan	multi-scan
Refinement method	Full-matrix least-	$F^2 > 2$ sigma (F^2)
	squares on F ²	
Data / restraints / parameters	1654 / 0 / 96	3532 / 0 / 219
Goodness-of-fit on F^2	1.060	1.111
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0155$ and $wR_2 =$	$R_1 = 0.0777$ and $wR_2 =$
	0.0388	0.1703
<i>R</i> Indices (all data)	$R_1 = 0.0157$ and $wR_2 =$	$R_1 = 0.1070$ and $wR_2 =$
	0.0389	0.1821

 Table S1 Crystal data and structure refinements for compound 1 and 2.

Fig. S1 The coordination environments and unit cell of (a) compound [Pb(4-bpdh)(Cl)₂]_n (1)
(b) compound [Pb(4-bpdh)(Cl)(NO₃)]_n (2) and (c) compound [Pb(4-bpdh)(NO₃)₂(H₂O)]_n
(3) (Pb= violet, O = red, C = gray and N= blue Cl= orange and H= white).

a

(b)

(c)

Fig. S2 A schematic diagram illustrating the interactions in polymeric chains of (a) compound 1 and (b) compound 2 and (c) compound 3.

Fig. S3 The XRD patterns of (a) simulated from single crystal X-ray data of compound 3, (b) bulk materials as synthesized of compound 3, (c) simulated from single crystal X-ray data of compound 2, (d) bulk materials obtained by solid state anion-replacement of compound 3 with 1 mmol KCl, (e) bulk materials obtained by solid state anion-replacement of compound 2 with 1 mmol Cl, and (f) simulated from single crystal X-ray data of compound 1, (g) compound 1 obtained by solid state anion-replacement of compound 2.

Fig. S4 The XRD patterns of (a) compound **1** that obtained by solid state anion-replacement of compound **3** with 2 mmol KCl (b) compound **2** obtained by solid state anion-replacement of compound **1** with 1 mmol NaNO₃, (c) compound **3** obtained by solid state anion-replacement of compound **2** with 1 mmol NaNO₃, (d) compound **3** obtained by solid state anion-replacement of compound **1** with 2 mmol NaNO₃.

Fig. S5 IR spectra of (a) compound **3**, (b) bulk materials obtained by solid state anion-replacement of compound **3** by grinding with 1 mmol KCl, (c) bulk materials obtained by solid state anion-replacement of compound **2** by grinding with 1 mmol KCl and (d) bulk materials obtained by solid state anion-replacement of compound **3** by grinding with 2 mmol KCl.

Fig. S6 A schematic diagram illustrating the structural conversions from 1D coordination polymer **1** (up) to 2D coordination polymers **2** (middle) and 3D coordination polymer **3** (bottom) by solid state reversible anion-replacement.

Fig. S7 schematic diagram for these Solid State Crystal to Crystal Conversions.

Fig. S8 XRD patterns of (a) PbO, (b) PbO/Pb₃O₂Cl₂ and (c) PbCl₂ nanoparticles prepared by thermolysis of compounds **3**, **2** and **1** in oleic acid at 180 °C under air atmosphere for 2 h,

respectively.