Supplementary Information

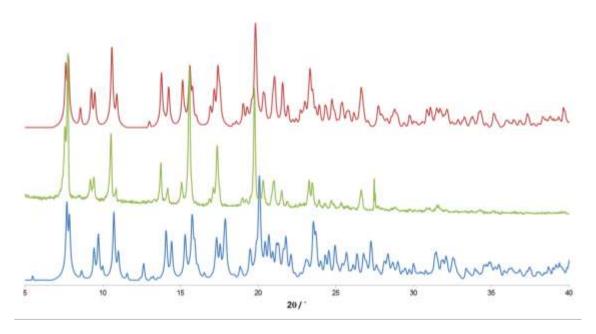
Temperature-dependent guest reorientation: a reversible order-disorder transformation in a single crystal.

Matteo Lusi and Leonard J. Barbour

Single crystal X-ray diffraction:

X-ray diffraction data were collected for the same single crystal at 100, 173 243 and 313 K on a Bruker Apex-II Duo diffractometer employing Mo $K\alpha$ radiation. The structures was solved and refined using the programs SHELXS-97 and SHELXL-97 respectively. The program X-Seed was used as an interface to the SHELX programs, and to prepare the figures. The atoms of the meta-xylene were refined isotropically

Crystal data for $\mathbf{1}_{100}$: $C_{62}H_{56}N_6NiS_2$, M=1007.95, lilac plate, $0.300\times0.200\times0.050$ mm³, monoclinic, space group $P2_1/n$ (No. 14), a=10.4770(4), b=23.0584(10), c=22.7761(9) Å, $\beta=99.028(2)^\circ$, V=5434.1(4) Å³, Z=4, $D_c=1.232$ g/cm³, $F_{000}=2120$, MoK α radiation, $\lambda=0.71073$ Å, T=100(2)K, $2\theta_{max}=60.9^\circ$, 53528 reflections collected, 14861 unique ($R_{int}=0.0537$). Final GooF=1.030, RI=0.0466, wR2=0.1020, R indices based on 10178 reflections with I>2(I) (refinement on F^2), 644 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.478$ mm⁻¹.


Crystal data for $\mathbf{1}_{173}$: C₆₂H₅₆N₆NiS₂, M = 1007.96, lilac plate, $0.30 \times 0.20 \times 0.05$ mm³, monoclinic, space group $P2_1/n$ (No. 14), a = 10.4770(4), b = 23.0584(10), c = 22.7761(9) Å, $\beta = 99.028(2)^{\circ}$, V = 5434.2(4) Å³, Z = 4, $D_c = 1.232$ g/cm³, $F_{000} = 2120$, MoK α radiation, $\lambda = 0.71073$ Å, T = 173(2)K, $2\theta_{\text{max}} = 61.0^{\circ}$, 54274 reflections collected, 15062 unique (R_{int} = 0.0731). Final GooF = 0.965, RI = 0.0572, wR2 = 0.1402, R indices based on 8786 reflections with I >2sigma(I) (refinement on F^2), 622 parameters, 1 restraint. Lp and absorption corrections applied, $\mu = 0.478$ mm⁻¹.

Crystal data for $\mathbf{1}_{243}$: C₆₂H₅₆N₆NiS₂, M=1007.96, lilac plate, $0.30\times0.25\times0.05$ mm³, monoclinic, space group C2/c (No. 15), a=10.5793(2), b=23.1141(4), c=22.8660(4) Å, $\beta=99.5160(10)^\circ$, V=5514.50(17) Å³, Z=4, $D_c=1.214$ g/cm³, $F_{000}=2120$, MoK α radiation, $\lambda=0.71073$ Å, T=243(2)K, $2\theta_{\text{max}}=60.9^\circ$, 27586 reflections collected, 7636 unique ($R_{\text{int}}=0.1401$). Final GooF=0.852, RI=0.0609, wR2=0.1583, R indices based on 4045 reflections with I >2sigma(I) (refinement on F^2), 323 parameters, 1 restraint. Lp and absorption corrections applied, $\mu=0.471$ mm⁻¹.

Crystal data for ${\bf 1_{313}}$: C₆₂H₅₆N₆NiS₂, M=1007.96, lilac plate, $0.30\times0.25\times0.05$ mm³, monoclinic, space group C2/c (No. 15), a=10.6221(7), b=23.1917(16), c=23.0275(15) Å, $\beta=99.649(4)^\circ$, V=5592.4(6) Å³, Z=4, $D_c=1.197$ g/cm³, $F_{000}=2120$, MoK α radiation, $\lambda=0.71073$ Å, T=313(2)K, $2\theta_{\rm max}=60.9^\circ$, 27880 reflections collected, 7766 unique ($R_{\rm int}=0.0451$). Final GooF=0.989, R1=0.0602, wR2=0.1739, R indices based on 3833 reflections with I >2sigma(I) (refinement on F^2), 305 parameters, 1 restraint. Lp and absorption corrections applied, $\mu=0.465$ mm⁻¹.

Powder X-ray diffraction:

X-ray powder diffraction patterns were collected at room temperature on a PANalytical X'Celerator diffractometer employing Cu $K\alpha_{1,2}$ radiation.

Figure S1. Comparison of powder X-ray diffraction measured for **1** (middle) with the patterns simulated* for the structure determined at 100 K (bottom) and at 313 K (top).

* experimental Cu $Ka_{1,2}$ diffraction patterns were simulated from the crystallographic information file using a step size of 0.02° and a Gaussian peak shape with full width at maximum height (FWMH) of 0.1 in 2θ .

Thermal Analysis:

TA Instruments Q100 DSC and Q500 TGA were used for thermal analyses. Samples with a mass of 3 to 5 mg were measured under nitrogen at a heating/cooling rate of 15 °C per minute. TA UNIVERSAL ANALYSIS software was used for data graphics and data analysis.

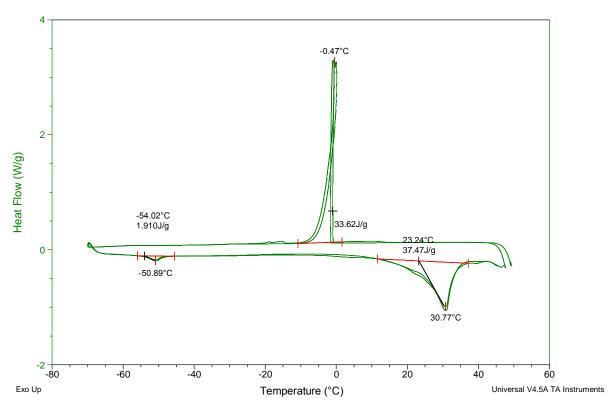
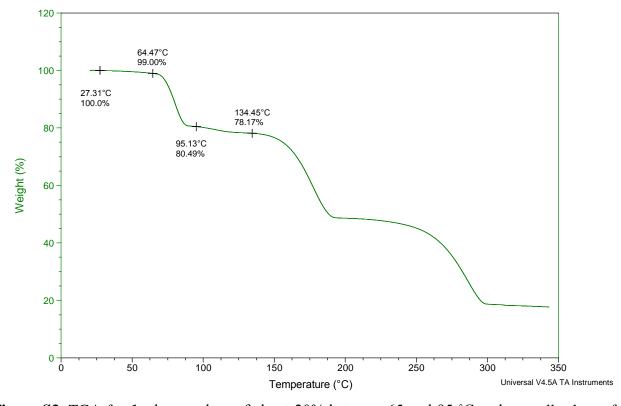



Figure S2. Two consecutive DSC cycles for 1 show the reversibility of the phase transitions.

Figure S3. TGA for **1**: shows a loss of about 20% between 65 and 95 $^{\circ}$ C and a smaller loss of about 2% 95 and 130 $^{\circ}$ C.