Electronic Supplementary Information (ESI) for

Exploring the Structural Diversities and Magnetic Properties of Copper(II) and Manganese(II) Complexes Based on 5-Methoxyisophthalate and Flexible Bis(Imidazole) Ligands

Xin-Hong Chang,[†] Jian-Hua Qin,[†] Min-Le Han,[†] Lu-Fang Ma,^{*,†} and Li-Ya Wang^{*,†,‡}

[†]College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, P. R. China. [‡]College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R.

China

Table S1 Selected bond lengths (Å) and angles (°) for 1

1.9208(18)	Cu(1)-O(6)#1	1.9288(17)		
1.9653(17)	Cu(1)-N(1)	1.987(2)		
1.9537(17)	Cu(2)-O(4)#3	1.9537(17)		
2.0105(17)	Cu(2)-O(1)#4	2.0105(17)		
80.15(8)	O(6)-Cu(1)-O(2)	94.47(7)		
161.74(8)	O(6)-Cu(1)-N(1)	170.43(9)		
100.37(8)	O(2)-Cu(1)-N(1)	87.84(8)		
92.76(11)	O(4)#2-Cu(2)-O(1)#4	173.99(7)		
87.67(8)	O(4)#2-Cu(2)-O(1)	87.67(8)		
173.99(7)	O(1)#4-Cu(2)-O(1)	92.54(11)		
	1.9208(18)□ 1.9653(17)□ 1.9537(17)□ 2.0105(17) 80.15(8)□ 161.74(8)□ 100.37(8)□ 92.76(11)□ 87.67(8)□ 173.99(7)□	$1.9208(18) \square$ Cu(1)-O(6)#1 $1.9653(17) \square$ Cu(1)-N(1) $1.9537(17) \square$ Cu(2)-O(4)#3 $2.0105(17)$ Cu(2)-O(1)#4 $80.15(8) \square$ O(6)-Cu(1)-O(2) $161.74(8) \square$ O(6)-Cu(1)-N(1) $100.37(8) \square$ O(2)-Cu(1)-N(1) $92.76(11) \square$ O(4)#2-Cu(2)-O(1)#4 $87.67(8) \square$ O(4)#2-Cu(2)-O(1) $173.99(7) \square$ O(1)#4-Cu(2)-O(1)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y, -z + 1; #2 - x + 1/2, y - 1/2, z; #3 x + 1/2, y - 1/2, -z + 1/2; #4 - x + 1, y, -z + 1/2.

Table S2 Selected bond lengths (Å) and angles (°) for	2
---	---

Table 52 Selected bond lengths (X) and angles () for 2					
Cu(1)-N(4)#1	1.979(2)	Cu(1)-N(1)	1.986(3)		
Cu(1)-O(4)#2	2.004(2)	Cu(1)-O(1)	2.048(2)		
Cu(1)-O(3)#3	2.273(2)				
N(4)#1-Cu(1)-N(1)	175.10(10)	N(4)#1-Cu(1)-O(4)#2	95.97(10)		
N(1)-Cu(1)-O(4)#2	87.00(9)□	N(4)#1-Cu(1)-O(1)	89.17(10)		
N(1)-Cu(1)-O(1)	90.15(9)	O(4)#2-Cu(1)-O(1)	150.44(9)		
N(4)#1-Cu(1)-O(3)#3	90.48(10)	N(1)-Cu(1)-O(3)#3	84.81(10)		
O(4)#2-Cu(1)-O(3)#3	110.63(8)	O(1)-Cu(1)-O(3)#3	98.38(9)		

Symmetry transformations used to generate equivalent atoms: #1 x + 1, y, z - 1; #2 x - 1, y + 1, z; #3 -x + 2, -y + 1, -z + 1.

Table S3 Selected bond lengths (Å) and angles (°) for 3

Cu(1)-O(1) $1.925(3)\Box$ Cu(1)-O(3)#1 1.933	3(3)
Cu(1)-N(4)#2 $1.985(4)$ Cu(1)-N(1) 1.994	4(4)
Cu(1)-O(6) 2.596(4)	
O(1)-Cu(1)-O(3)#1 148.57(13) O(1)-Cu(1)-N(4)#2 93.44	8(13)
$O(3)$ #1-Cu(1)-N(4)#2 91.10(13) \Box $O(1)$ -Cu(1)-N(1) 92.23	8(14)
$O(3)$ #1-Cu(1)-N(1) 88.57(13) \square N(4)#2-Cu(1)-N(1) 169.4	45(14)
$O(1)-Cu(1)-O(6)$ 111.57(13) \Box $O(3)$ #1-Cu(1)-O(6) 99.8	5(13)
$N(4)$ #2-Cu(1)-O(6) 81.25(14) \square N(1)-Cu(1)-O(6) 88.42	2(14)

Symmetry transformations used to generate equivalent atoms: #1 x + 1, y, z; #2 - x + 1, -y + 1, -z + 2.

Table S4 Selected bond lengths (Å) and angles (°) for 4

	-		
Mn(1)-O(6)	2.107(3)	Mn(1)-O(6)#1	2.107(3)
Mn(1)-O(4)#2	2.213(3)	Mn(1)-O(4)#3	2.213(3)
Mn(1)-O(1)#1	2.217(3)	Mn(1)-O(1)	2.217(3)
Mn(2)-O(13)	2.108(3)	Mn(2)-O(7)	2.128(3)
Mn(2)-O(25)	2.226(3)	Mn(2)-O(4)#2	2.315(3)
Mn(2)-O(2)	2.342(3)	Mn(2)-O(1)	2.416(3)
Mn(2)-O(3)#2	2.422(3)	Mn(3)-O(11)	2.121(3)
Mn(3)-O(8)	2.159(3)	Mn(3)-O(18)#2	2.190(3)
Mn(3)-O(17)	2.203(2)	Mn(3)-O(26)	2.216(3)
Mn(4)-O(12)	2.097(3)	Mn(4)-O(12)#4	2.097(3)
Mn(4)-O(19)#5	2.177(3)	Mn(4)-O(19)#2	2.177(3)
Mn(4)-O(17)	2.220(3)	Mn(4)-O(17)#4	2.221(3)
O(6)-Mn(1)-O(6)#1	179.998(2)	O(6)-Mn(1)-O(4)#2	89.22(10)
O(6)#1-Mn(1)-O(4)#2	90.78(10)	O(6)-Mn(1)-O(4)#3	90.78(10)
O(6)#1-Mn(1)-O(4)#3	89.22(10)	O(4)#2-Mn(1)-O(4)#3	179.998(2)
O(6)-Mn(1)-O(1)#1	88.52(11)	O(6)#1-Mn(1)-O(1)#1	91.48(11)
O(4)#2-Mn(1)-O(1)#1	103.41(10)	O(4)#3-Mn(1)-O(1)#1	76.59(10)

O(6)-Mn(1)-O(1)	91.48(11)	O(6)#1-Mn(1)-O(1)	88.52(11)
O(4)#2-Mn(1)-O(1)	76.59(10)	O(4)#3-Mn(1)-O(1)	103.41(10)
O(1)#1-Mn(1)-O(1)	180.0	O(13)-Mn(2)-O(7)	88.94(10)
O(13)-Mn(2)-O(25)	87.87(10)	O(7)-Mn(2)-O(25)	174.82(10)
O(13)-Mn(2)-O(4)#2	141.84(10)	O(7)-Mn(2)-O(4)#2	87.29(10)
O(25)-Mn(2)-O(4)#2	92.70(10)	O(13)-Mn(2)-O(2)	92.56(10)
O(7)-Mn(2)-O(2)	93.33(10)	O(25)-Mn(2)-O(2)	90.89(10)
O(4)#2-Mn(2)-O(2)	125.57(9)	O(13)-Mn(2)-O(1)	147.22(10)
O(7)-Mn(2)-O(1)	95.62(10)□	O(25)-Mn(2)-O(1)	89.28(10)
O(4)#2-Mn(2)-O(1)	70.91(10)	O(2)-Mn(2)-O(1)	54.84(9)
O(13)-Mn(2)-O(3)#2	86.92(9)□	O(7)-Mn(2)-O(3)#2	89.99(10)
O(25)-Mn(2)-O(3)#2	85.76(9)□	O(4)#2-Mn(2)-O(3)#2	55.14(9)
O(2)-Mn(2)-O(3)#2	176.62(9)	O(1)-Mn(2)-O(3)#2	125.41(9)
O(11)-Mn(3)-O(8)	84.72(10)	O(11)-Mn(3)-O(18)#2	98.36(11)
O(8)-Mn(3)-O(18)#2	91.01(10)	O(11)-Mn(3)-O(17)	91.71(10)
O(8)-Mn(3)-O(17)	148.90(9)	O(18)#2-Mn(3)-O(17)	120.04(11)
O(11)-Mn(3)-O(26)	169.94(10)	O(8)-Mn(3)-O(26)	91.48(10)
O(18)#2-Mn(3)-O(26)	91.00(11)	O(17)-Mn(3)-O(26)	86.74(10)
O(12)-Mn(4)-O(12)#4	179.998(1)	O(12)-Mn(4)-O(19)#5	85.82(11)
O(12)#4-Mn(4)-O(19)#5	94.18(11)	O(12)-Mn(4)-O(19)#2	94.18(11)
O(12)#4-Mn(4)-O(19)#2	85.82(11)□	O(19)#5-Mn(4)-O(19)#2	180.0
O(12)-Mn(4)-O(17)	88.87(10)	O(12)#4-Mn(4)-O(17)	91.13(10)
O(19)#5-Mn(4)-O(17)	97.15(10)	O(19)#2-Mn(4)-O(17)	82.85(10)
O(12)-Mn(4)-O(17)#4	91.13(10)	O(12)#4-Mn(4)-O(17)#4	88.87(10)
O(19)#5-Mn(4)-O(17)#4	82.85(10)	O(19)#2-Mn(4)-O(17)#4	97.15(10)
O(17)-Mn(4)-O(17)#4	179.999(1)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, -y + 1, -z + 1; #2 x + 1, y, z; #3 - x + 1, -y + 1, -z + 1; #4 - x + 2, -y + 2, -z; #5 - x + 1, -y + 2, -z.

Table S5 Selected bond lengths (Å) and angles (°) for 5

10010 80	Servere Sona lengens (() in a mgres () is e	
Mn(1)-O(3)#1	2.1408(16)	Mn(1)-O(4)#2	2.1433(16)
Mn(1)-N(1)	2.223(2)	Mn(1)-N(4)#3	2.228(2)
Mn(1)-O(1)	2.2610(16)	Mn(1)-O(2)	2.3510(17)
O(3)#1-Mn(1)-O(4)#2	112.87(6)	O(3)#1-Mn(1)-N(1)	90.63(7)
O(4)#2-Mn(1)-N(1)	95.64(7)□	O(3)#1-Mn(1)-N(4)#3	86.61(7)
O(4)#2-Mn(1)-N(4)#3	85.13(7)□	N(1)-Mn(1)-N(4)#3	177.22(7)□
O(3)#1-Mn(1)-O(1)	97.64(6)	O(4)#2-Mn(1)-O(1)	149.03(6)
N(1)-Mn(1)-O(1)	88.97(7)	N(4)#3-Mn(1)-O(1)	91.73(7)
O(3)#1-Mn(1)-O(2)	154.44(6)	O(4)#2-Mn(1)-O(2)	92.26(6)
N(1)-Mn(1)-O(2)	91.44(7)	N(4)#3-Mn(1)-O(2)	91.20(7)
O(1)-Mn(1)-O(2)	56.94(6)		

Symmetry transformations used to generate equivalent atoms: #1 - x, -y + 1, -z + 2; #2 x + 1, y - 1, z; #3 x, y - 1,

z + 1.

Table S6 Sele	cted bond len	oths (Å) and	angles (°) for 6
I WOIC NO NEIC	cica bona ieng		

Mn(1)-O(1)#1	2.132(3)	Mn(1)-O(2)	2.145(3)
Mn(1)-O(4)#2	2.214(3)	Mn(1)-N(1)#3	2.235(4)
Mn(1)-N(3)	2.259(4)	Mn(1)-O(3)#2	2.347(3)
O(1)#1-Mn(1)-O(2)	118.49(11)	O(1)#1-Mn(1)-O(4)#2	150.93(11)
O(2)-Mn(1)-O(4)#2	90.58(11)	O(1)#1-Mn(1)-N(1)#3	86.46(13)
O(2)-Mn(1)-N(1)#3	92.32(12)□	O(4)#2-Mn(1)-N(1)#3	92.68(12)
O(1)#1-Mn(1)-N(3)	85.06(13)	O(2)-Mn(1)-N(3)	90.80(12)
O(4)#2-Mn(1)-N(3)	95.24(13)□	N(1)#3-Mn(1)-N(3)	171.45(14)
O(1)#1-Mn(1)-O(3)#2	93.50(10)	O(2)-Mn(1)-O(3)#2	147.93(11)

O(4)#2-Mn(1)-O(3)#2 57.45(10) N(3)-Mn(1)-O(3)#2 94.35(12)

N(1)#3-Mn(1)-O(3)#2 87.22(12)□

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, y, -z + 1/2; #2 x + 1/2, -y + 1/2, -z + 1; #3 x + 1/2, y + 1/2, -z + 1/2.

Table S7 Hydrogen bonds for 4					
D-H···A	d(D-H)	d(H···A)	d(D···A)	<(DHA)	
O(21)-H(1W)···O(9)#7	0.85	1.95	2.767(4)	159.9	
O(21)-H(2W)···O(24)#1	0.85	1.97	2.795(4)	163.7	
O(22)-H(3W)···O(3)	0.85	2.10	2.846(4)	146.2	
O(22)-H(4W)···O(26)W#8	0.85	2.19	2.820(4)	131.0	
O(23)-H(6W)···O(26)W#8	0.85	2.00	2.846(4)	171.6	
O(24)-H(7W)···O(25)W	0.85	2.10	2.914(4)	160.0	
O(24)-H(8W)···O(16)#9	0.85	2.18	3.025(5)	179.7	
O(25)-H(9W)···O(14)	0.85	1.89	2.670(4)	151.1	
O(25)-H(10W)···O(23)W	0.85	1.87	2.708(4)	166.8	
O(26)-H(11W)···O(9)	0.85	1.95	2.706(4)	147.5	
O(26)-H(12W)···O(22)W#10	0.85	1.98	2.820(4)	168.0	

Figure S1 The XRPD patterns for complexes 1–6: the as-synthesized patterns (red) and the simulated based on X-ray single-crystal data (black).

Figure S2. Thermogravimetric curves of complexes 1–6.