Supporting Information

Battlement shaped 1D coordination polymer, based on a bis(*N*-methylimidazol-2-yl)butadiyne ligand

Thomas Waidmann^a, Nico Fritsch^a, Johannes Tucher^a, Marc Rudolf^b, Felix Glaser^a, Dirk M. Guldi^b* and Nicolai Burzlaff^a*

Experimental Section

The synthesis of 2-iodo-1-methylimidazole (4) and 1-methyl-2-trimethylsilyethynylimidazole (5) were performed following literature procedures. ^[8-10] NMR spectra were recorded on a Bruker DPX 300 AVANCE, δ are given values relative to the residual solvent signal (1H: CHCl₃, 7.26 ppm; ¹³C{¹H}: CDCl₃, 77.2 ppm). Elemental analyses were carried out on a Euro EA 3000 (Euro Vector). Infrared spectra were recorded with a EXCALIBUR FTS-3500 FT-IR spectrometer. X-Ray structure analyses were carried out on a Bruker Kappa CCD (SADABS-2008/1 (Bruker, 2008)). All calculations were carried out with the SHELX97 software package.

2-(2-Chloroethenyl)-*N***-methylimidazole-2-yl** (**3a,b**): To a solution of (chloromethyl)triphenylphosphonium chloride (25.0 g, 72.0 mmol) in THF (100 mL) *n*-butyllithium (45.0 mL, 72.0 mmol, 1.60 M in hexanes) was added drop wise at 0 °C, and stirred for 1 h. Subsequently 1-methylimidazole-2-carbaldehyde (**2**) (5.00 g, 45.0 mmol) was added and stirred for 12 hours at room temperature. The yellow-brown product containing a mixture of *E*/*Z*-isomers was purified by column chromatography (silica, 6×20 cm, hexane/EtOAc 5/1 and silica 6×40 cm, CHCl₃/MeOH 12/1) yielding a brown oil. (1.60 g, 11.2 mmol, 25 %). ¹H-NMR (300 MHz, CDCl₃): (*E*)-2-(2-Chloroethynyl)-*N*-methylimidazole-2-yl: δ = 3.62 (s, 3H, CH₃), 6.66 (d, 1H, ²J_{HH} = 13.2 Hz, Cl-HC=*CH*-), 6.84 (s, 1H, C_{im}), 7.00 (d, 1H, ²J_{HH} = 5.94 Hz, C_{im}), 7.08 (d, 1H, ²J_{HH} = 13.2 Hz, Cl-HC=CH-) ppm. ¹H–NMR (300 MHz, CDCl₃): (*Z*)-2-(2-Chloroethynyl)-*N*-methylimidazole-2-yl: δ = 3.62 (s, 3H, CH₃), 6.43 (d, 1H, ²J_{HH} = 8.19 Hz, Cl-HC=CH-), 6.53 (d, 1H, ²J_{HH} = 8.31 Hz, C_{im}), 6.89 (s, 1H, C_{im}), 7.20 (s, 1H, Cl-HC=CH-) ppm. IR : (KBr) \tilde{v} = 3047 (m), 2956 (w), 2857 (w), 1720 (s), 1615 (m), 1485 (m), 1438 (s), 1418 (m), 1363 (w), 1290 (s), 1189 (s), 1123 (m), 1120 (m) cm⁻¹.

2-Ethynyl-*N***-methylimidazole-2-yl (6): Route A** - A Schlenk flask was charged with 1-methyl-2-trimethylsilyethynylimidazole (5) (490 mg, 2.75 mmol) and MeOH (25 mL). After the addition of KOH (13.4 M, 2 mL) the reaction mixture was stirred 2 h. The mixture was diluted with water (100 mL), extracted with CHCl₃ (4 × 50 mL) and dried over Na₂SO₄. The solvent was removed by rotary evaporator and the crude product was purified by column chromatography (silica, 4 × 5 cm, EtOAc/hexane 3/1) to give yellow oil (254 mg, 2.39 mmol, 87 %). Characterization see below. **Route B** - A round bottom flask was charged with 2-(2-chloroethynyl)-*N*-methylimidazol-2-yl (**3a,b**) (400 mg, 2.80 mmol) in dried THF (10 mL), and potassium-*tert*-butoxide (670 mg, 59.0 mmol) in THF (10 mL) was added at 0 °C. The mixture was stirred for 12 hours at room temperature. Afterwards the mixture was poured on ice water and neutralized with a solution of ammonium chloride (20%). The brown mixture was extracted with CH₂Cl₂ (4 × 50 mL), dried over Na₂SO₄. The solvent was removed by rotary evaporator. The product was purified by column chromatography (silica 3 × 30cm, CHCl₃/MeOH/Et₃N, 12/1/1) to yield a yellow-brown oil (90.0 mg 0.80 mmol, 28.5%). ¹H-NMR (300 MHz, CDCl₃): $\delta = 3.31$ (s, 1H, HC=C-), 3.73 (s, 3H, CH₃), 6.89 (s, 1H, C_{im}) 7.02 (s, 1H, C_{im}) ppm. ¹³C{¹H}-NMR (300 MHz, CDCl₃): $\delta = 3.3.7$ (CH₃), 72.2 (HC=C-), 73.1 (HC=C-), 128.4 (C_{im}), 129.5 (C_{im}), 130.5 (C_{im}) ppm.

Bis(N-methylimidazol-2-yl)butadiyne (bmib) (7): CuCl (0.049 g, 0.500 mmol) in pyridine (3 mL) was reacted with 2-ethynyl-*N*-methylimidazole (6) (0.530 g, 5.00 mmol) under oxygen atmosphere for 1.5 h at 45 °C. Pyridine was removed in vacuum, the brown residue was washed with aqueous NH₄Cl solution (10%, 70 mL), and extracted with CH₂Cl₂ (3 × 100 mL). The combined organic phases were washed (sat. NH₄Cl solution), and dried (MgSO₄). Solvent was removed and the product was purified by column chromatography (silica, $\emptyset = 3$ cm, 30 cm, CHCl₃/MeOH/Et₃N, 12/1/1, v/v/v) to yield a yellow-brown powder. Crystals suitable for X-Ray diffraction analysis were obtained by slow evaporation from a solution of 7 in acetone. Yield (0.490 g, 2.33 mmol, 93%). ¹H-NMR (300 MHz, CDCl₃): $\delta = 3.70$ (s, 3H, CH₃), 6.89 (s, 1H, C_{im}), 7.03 (s, 1H, C_{im}) ppm. ¹³C{¹H}-NMR (300 MHz, acetone-d6): $\delta = 33.9$ (CH₃), 73.7 (-C=*C*-*C*=*C*-), 76.5 ((-*C*=*C*-*C*=*C*-), 124.6 (C_{im}), 131.0 (C_{im}), 132.2 (C_{im}) ppm. C₁₂H₁₀N₄ (210.09 g/mol): calculated C: 68.56; H: 4.79; N: 26.65, found C: 68.96; H: 4.43; N: 27.21. ESI/TOF MS (MeOH): m/z (%) = 443.1702 (100) [2 × M + Na]⁺. IR: (KBr) $\tilde{v} = 2153$ (w), 1709 (w), 1619 (w), 1509 (s), 1477 (s), 1454 (m), 1445 (m), 1415 (m), 1401 (m), 1388 (m), 1355 (m),

1287 (s), 1192 (m), 1150 (m), 1139 (m), 1083 (w), 1046 (w), 921 (w), 911 (w), 863 (w), 771(w), 754 (s), 697(w), 691(w), 623 (w), 598 (w), 537 (w) cm⁻¹.

 $[Zn_5(OAc)_{10}(bmib)_2]_n$ (8): A solution of bmib (50.0 mg, 0.236 mmol) in MeCN was layered with a solution of $Zn(OAc)_2$ in THF (35 mL). By slow evaporation of the solvents, single crystals suitable for X-Ray diffraction analysis were obtained after three days.

Steady-state absorption: Absorption spectra of all samples were recorded with a Lambda 2 UV/Vis-spectrometer from Perkin Elmer (190 to 1100 nm; double-beam-instrument) using a quartz cell and 0.5 nm resolution.

Steady-state emission: The spectra were recorded on a FluoroMax 3 fluorometer built by HORIBA JobinYvon.

Time resolved absorption: Femtosecond transient absorption studies were performed with 258 nm laser pulses (1 kHz, 150 fs pulse width) from an amplified Ti:Sapphire laser system (model CPA 2101, Clark- MXR Inc.) in the TAPPS, transient absorption pump/probe system, Helios from Ultrafast Systems with 1 μ J laser energy. Nanosecond laser flash photolysis experiments were performed with 266 nm laser pulses from a Brilliant CDR Nd:YAG system (4 ns pulse width, Quantel) in a front face excitation geometry with 5 mJ laser energy.

Crystallographic data for 7. $C_{12}H_{10}N_4$, M = 210.24, monoclinic, $P2_1/c$, a = 7.0586(4), b = 12.6096(4), c = 12.8621(7) Å, $\beta = 92.413(5)^\circ$, V = 1053.08(9)Å³, T = 153(2) K, Z = 4, μ (Mo-Ka) = 0.085 mm⁻¹, 14414 data collected, 2146 independent reflections (R_{int} = 0.0230). Final R₁ [I > 2 σ (I)] = 0.0387, wR₂[all data] = 0.0993. CCDC 949213. Crystallographic data for **8**. $C_{22}H_{25}N_4O_{10}Zn_{2.5}$, M = 668.89, triclinic, *P*-1, a = 8.0568(10), b = 10.3125(10), c = 16.0151(16) Å, a = 98.594(8), $\beta = 94.875(9)$, $\gamma = 93.583(9)^\circ$, V = 1307.1(2)Å³, T = 153(2) K, Z = 2, μ (Mo-Ka) = 2.344 mm⁻¹, 13144 data collected, 5321 independent reflections (R_{int} = 0.0743). Final R₁ [I > 2 σ (I)] = 0.0530, wR₂[all data] = 0.1285. CCDC 949214.

# #SUE #	BMISSION INFORMATION	
# # #	For a journal send the form to th	e address specified by the journal
# # #	For a private communication to t deposit@ccdc.cam.ac.uk	he CCDC send the form to the address
# # #	For up-to-date information on de http://www.ccdc.cam.ac.uk/	eposition procedures, check the website
# 1. 9	SUBMISSION DETAILS	
_pub ; Prof	ol_contact_author	
Depa Univ Egerl D-91	artment of Chemistry and Pharmacy ersity of Erlangen-N\"urnberg landstrasse 1 058 Erlangen	
Gern ;	nany	
_pub _pub _pub _pub _pub	ol_contact_author_phone ol_contact_author_fax ol_contact_author_email ol_requested_journal ol_requested_coeditor_name	49(9131)8528976 49(9131)8527387 burzlaff@chemie.uni-erlangen.de 'Chem. Commun.' ?
_pub	l_contact_letter	
, Pleas depo ;	se consider this CIF submission (2 co sition. We are awaiting a notice abo	mpounds) for structural data out the assigned CSD numbers.
#		
# 2.1 _pub	FITLE AND AUTHOR LIST ol_section_title	
, Battl bis(N	ement shaped 1D coordination poly I-methyl-imidazol-2-yl)butadiyne lig	mer, based on a and
,		
loop _pub _pub 'Wai	_ I_author_name I_author_address dmann, Thomas'	
; Depa Univ Egerl D-91 Gern	artment of Chemistry and Pharmacy ersity of Erlangen-N\"urnberg landstrasse 1 058 Erlangen nany	
; 'Frits	ch, Nico'	
, Depa Univ Egerl D-91 Gern	artment of Chemistry and Pharmacy ersity of Erlangen-N\"urnberg landstrasse 1 058 Erlangen nany	
; 'Tuch	ner, Johannes'	
, Depa Univ Egerl D-91	artment of Chemistry and Pharmacy ersity of Erlangen-N\"urnberg landstrasse 1 058 Erlangen	

Germany 'Rudolf, Marc' Department of Chemistry and Pharmacy University of Erlangen-N\"urnberg Egerlandstrasse 3 D-91058 Erlangen Germany 'Glaser, Felix' Department of Chemistry and Pharmacy University of Erlangen-N\"urnberg Egerlandstrasse 1 D-91058 Erlangen Germany 'Guldi, Dirk' Department of Chemistry and Pharmacy University of Erlangen-N\"urnberg Egerlandstrasse 3 D-91058 Erlangen Germany 'Burzlaff, Nicolai' Department of Chemistry and Pharmacy University of Erlangen-N\"urnberg Egerlandstrasse 1 D-91058 Erlangen Germany ; #----data_compound7 _____date _audit_creation_method 2013-06-28T11:59:27-00:00 'WinGX routine CIF_UPDATE' #-----# # CHEMICAL INFORMATION #-----# _chemical_name_systematic ; ? ; _chemical_formula_moiety 'C12 H10 N4' _chemical_formula_sum 'C12 H10 N4' _chemical_formula_weight 210.24 _chemical_compound_source 'synthesis as described' #-----# # UNIT CELL INFORMATION #------# _symmetry_cell_setting monoclinic 'P 21/c' '-P 2ybc' _symmetry_space_group_name_H-M _____symmetry_space_group_name_Hall 14 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z'

#

#

'x, -y-1/2, z-1/2'

_cell_length_a	7.0586(4)
_cell_length_b	11.6096(4)
_cell_length_c	12.8621(7)
_cell_angle_alpha	90
_cell_angle_beta	92.413(5)
_cell_angle_gamma	90
_cell_volume	1053.08(9)
_cell_formula_units_Z	4
_cell_measurement_temperature	150(2)
_cell_measurement_refIns_used	89
_cell_measurement_theta_min	6
_cell_measurement_theta_max	20
_cell_measurement_wavelength	0.71073

#

#

#

#			-#
#	CRYSTAL INFORM	ATION	
#			-#
_exptl_crystal_descriptio	n	block	
_exptl_crystal_colour		yellow	
_exptl_crystal_size_max		0.37	
_exptl_crystal_size_mid		0.184	
_exptl_crystal_size_min		0.158	
_exptl_crystal_density_d	iffrn	1.326	
_exptl_crystal_density_n	nethod	'not measur	ed'
exptl_crystal_F_000		440	
_exptl_special_details			
;			
?			
;			
,			
#			-#
#	ABSORPTION COR	RECTION	
#			-#
_exptl_absorpt_coefficie	nt_mu	0.085	
exptl absorpt correction	on type	multi-scan	
exptl absorpt process	details	'SADABS, Bru	ker-AXS, 2002'
exptl absorpt correction	n T min	0.6921	
exptl absorpt correction	on T max	0.7454	
#			-#
#	DATA COLLECTION	J	
#			-#
diffrn ambient temper	ature	150(2)	
diffrn radiation wavele	ength	0.71073	
diffrn radiation type		MoK\a	
diffrn radiation monoc	hromator	graphite	
diffrn radiation probe		x-rav	
diffrn detector area re	esol mean	9	
diffrn measurement device type 'Bruker-No		nius KappaCCD'	
diffrn measurement method			
:			
, \f- and \w-rotations wit	h 1.60 \% and 192	sec per frame	
,			

_diffrn_refIns_av_R_equivalents	0.023
_diffrn_reflns_av_unetl/netl	0.014
_diffrn_reflns_number	14414
_diffrn_refIns_limit_h_min	-8
_diffrn_refIns_limit_h_max	8
_diffrn_refIns_limit_k_min	-14
_diffrn_refIns_limit_k_max	14
_diffrn_refIns_limit_l_min	-16
_diffrn_refIns_limit_l_max	16
_diffrn_refIns_theta_min	6.25

_diffrn_reflns_theta_max 26.5 26.5 _diffrn_measured_fraction_theta_full 0.986 _diffrn_measured_fraction_theta_max 0.986 _reflns_number_total 2146 _reflns_number_gt 1914 _reflns_threshold_expression >2sigma(I) # -----# COMPUTER PROGRAMS USED # # _computing_data_collection 'COLLECT (Bruker-Nonius, 2002)' _computing_cell_refinement 'EVALCCD (Duisenberg, 2003)' _computing_data_reduction 'EVALCCD (Duisenberg, 2003)' 'SHELXS-86 (Sheldrick, 1986)' _computing_structure_solution _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' computing molecular graphics 'Ortep-3 for Windows (Farrugia, 1997)' _computing_publication_material 'WinGX publication routines (Farrugia, 1999)' ## REFINEMENT INFORMATION # <pre_refine_special_details</pre> Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^ > 2$ sigma($F^2^$) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0456P)^2^+0.4547P] where P=(Fo^2^+2Fc^2^)/3' atom sites solution primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_number_reflns 2146 _refine_ls_number_parameters 147 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0443 _refine_ls_R_factor_gt 0.0387 _refine_ls_wR_factor_ref 0.0993 _refine_ls_wR_factor_gt 0.0958 _refine_ls_goodness_of_fit_ref 1.068 _refine_ls_restrained_S_all 1.068 _refine_ls_shift/su_max 0 _refine_ls_shift/su_mean 0 _refine_diff_density_max 0.285 refine diff density min -0.222 _refine_diff_density_rms 0.037 # --# ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS #

-----#

#

#

#

loop_ _atom_type_symbol

Ħ

_atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

loop_

_atom_site_label _atom_site_type_symbol atom site fract x atom site fract y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag atom site refinement flags atom site disorder assembly _atom_site_disorder_group C1 C 0.18554(17) 0.64825(11) 0.53301(10) 0.0218(3) Uani 1 1 d . . . C2 C 0.22584(17) 0.56073(11) 0.48919(10) 0.0218(3) Uani 1 1 d . . . C3 C 0.27293(17) 0.46293(11) 0.43701(10) 0.0214(3) Uani 1 1 d ... C4 C 0.31627(17) 0.37864(11) 0.38930(9) 0.0217(3) Uani 1 1 d . . . C11 C 0.13725(17) 0.75229(11) 0.58303(9) 0.0192(3) Uani 1 1 d ... C12 C 0.06006(18) 0.87078(11) 0.70561(10) 0.0227(3) Uani 1 1 d . . . H12 H 0.0304 0.9023 0.7694 0.027 Uiso 1 1 calc R . . C13 C 0.06586(19) 0.92696(11) 0.61323(10) 0.0243(3) Uani 1 1 d . . . H13 H 0.0403 1.0049 0.6039 0.029 Uiso 1 1 calc R . . C14 C 0.1154(2) 0.66564(12) 0.76171(11) 0.0301(3) Uani 1 1 d . . . H14A H -0.0108 0.6437 0.7786 0.045 Uiso 1 1 calc R . . H14B H 0.1839 0.6907 0.8237 0.045 Uiso 1 1 calc R . . H14C H 0.1789 0.6008 0.7326 0.045 Uiso 1 1 calc R . . C21 C 0.36786(17) 0.28038(11) 0.33160(10) 0.0209(3) Uani 1 1 d . . . C22 C 0.44779(18) 0.10325(11) 0.29782(10) 0.0256(3) Uani 1 1 d . . . H22 H 0.4792 0.0257 0.3037 0.031 Uiso 1 1 calc R . . C23 C 0.4393(2) 0.16719(13) 0.20951(11) 0.0301(3) Uani 1 1 d . . . H23 H 0.4641 0.139 0.1438 0.036 Uiso 1 1 calc R . . C24 C 0.3899(2) 0.14708(12) 0.48572(10) 0.0272(3) Uani 1 1 d . . . H24A H 0.3437 0.0698 0.4926 0.041 Uiso 1 1 calc R . . H24B H 0.3049 0.1996 0.5177 0.041 Uiso 1 1 calc R . . H24C H 0.5135 0.1532 0.5192 0.041 Uiso 1 1 calc R . . N11 N 0.11426(16) 0.85349(9) 0.53599(8) 0.0239(3) Uani 1 1 d . . . N12 N 0.10631(14) 0.75914(9) 0.68633(8) 0.0198(2) Uani 1 1 d . . . N21 N 0.38958(17) 0.27852(10) 0.22980(9) 0.0285(3) Uani 1 1 d . . . N22 N 0.40109(14) 0.17538(9) 0.37607(8) 0.0205(2) Uani 1 1 d . . .

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0222(6) 0.0203(6) 0.0230(6) 0.0007(5) 0.0019(5) 0.0009(5) C2 0.0236(6) 0.0195(6) 0.0223(6) 0.0012(5) 0.0024(5) 0.0010(5) C3 0.0231(6) 0.0198(6) 0.0214(6) 0.0009(5) 0.0018(5) 0.0013(5) C4 0.0224(6) 0.0216(6) 0.0212(6) 0.0012(5) 0.0019(5) 0.0016(5) C11 0.0202(6) 0.0181(6) 0.0195(6) 0.0002(5) 0.0014(4) 0.0007(4) C12 0.0278(6) 0.0205(6) 0.0199(6) -0.0041(5) 0.0025(5) 0.0024(5) C13 0.0318(7) 0.0165(6) 0.0248(7) -0.0006(5) 0.0030(5) 0.0045(5) C14 0.0401(8) 0.0254(7) 0.0247(7) 0.0099(6) 0.0015(6) 0.0008(6) C21 0.0214(6) 0.0204(6) 0.0211(6) -0.0013(5) 0.0020(5) 0.0024(5) C22 0.0256(6) 0.0212(6) 0.0302(7) -0.0071(5) 0.0018(5) 0.0038(5) C23 0.0351(7) 0.0324(7) 0.0230(7) -0.0082(6) 0.0034(5) 0.0085(6) C24 0.0322(7) 0.0261(7) 0.0236(7) 0.0035(5) 0.0046(5) 0.0017(5) N11 0.0321(6) 0.0190(5) 0.0208(5) 0.0017(4) 0.0044(4) 0.0046(4) N12 0.0240(5) 0.0176(5) 0.0178(5) 0.0017(4) 0.0010(4) -0.0005(4) N21 0.0356(6) 0.0291(6) 0.0211(6) -0.0011(5) 0.0048(5) 0.0082(5) N22 0.0215(5) 0.0185(5) 0.0216(5) -0.0015(4) 0.0011(4) 0.0008(4)

#		#
#	MOLECULAR GEOMETRY	
#		#

#

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 C2 1.2019(18).? C1 C11 1.4169(17) . ? C2 C3 1.3671(17) . ? C3 C4 1.2014(18).? C4 C21 1.4168(17) . ? C11 N11 1.3284(16) . ? C11 N12 1.3579(16).? C12 C13 1.3576(18) . ? C12 N12 1.3620(16).? C13 N11 1.3638(16) . ? C14 N12 1.4550(16) . ? C21 N21 1.3249(17).? C21 N22 1.3627(16).? C22 C23 1.356(2) . ? C22 N22 1.3605(16) . ? C23 N21 1.3673(18) . ? C24 N22 1.4535(17) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C11 179.03(13) . . ? C1 C2 C3 178.43(14) . . ? C4 C3 C2 178.38(14) . . ? C3 C4 C21 179.06(13) . . ? N11 C11 N12 111.86(11) . . ? N11 C11 C1 125.05(11) . . ? N12 C11 C1 123.08(11) . . ? C13 C12 N12 106.35(11) . . ? C12 C13 N11 110.78(11) . . ? N21 C21 N22 112.04(11) . . ? N21 C21 C4 125.02(12) . . ? N22 C21 C4 122.95(11) . . ? C23 C22 N22 106.21(11) . . ? C22 C23 N21 111.11(12) . . ? C11 N11 C13 104.53(10) . . ? C11 N12 C12 106.47(10) . . ?

C11 N12 C14 127.15(11) . . ? C12 N12 C14 126.36(11) ..? C21 N21 C23 104.21(11) ..? C22 N22 C21 106.43(11) . . ? C22 N22 C24 127.12(11) ..? C21 N22 C24 126.45(11) ..? #----data compound8 2013-06-28T11:26:43-00:00 _audit_creation_date 'WinGX routine CIF_UPDATE' _audit_creation_method #------# # CHEMICAL INFORMATION #------# _chemical_name_systematic : ? ; _chemical_formula_moiety 'C44 H50 N8 O20 Zn5' _chemical_formula_sum 'C44 H50 N8 O20 Zn5' 1337.87 _chemical_formula_weight _chemical_compound_source 'synthesis as described' <u>#</u>_ -----# # UNIT CELL INFORMATION #------# _symmetry_cell_setting triclinic 'P -1' _symmetry_space_group_name_H-M '-P 1' _symmetry_space_group_name_Hall _symmetry_Int_Tables_number 2 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 8.0568(10) _cell_length_b 10.3125(10) _cell_length_c 16.0151(16) _cell_angle_alpha 98.594(8) _cell_angle_beta 94.875(9) _cell_angle_gamma 93.583(9) _cell_volume 1307.1(2) _cell_formula_units_Z 1 _cell_measurement_temperature 150(2) _cell_measurement_reflns_used 51 _cell_measurement_theta_min 6 _cell_measurement_theta_max 20 _cell_measurement_wavelength 0.71073 #------# # CRYSTAL INFORMATION #-------# _exptl_crystal_description block _exptl_crystal_colour brown 0.15 _exptl_crystal_size_max 0.103 _exptl_crystal_size_mid 0.056 _exptl_crystal_size_min _exptl_crystal_density_diffrn 1.700 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 680 _exptl_special_details ;

#

#

#

#

#

#

#

______# # REFINEMENT INFORMATION #------#

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger.

_refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full refine Is weighting scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0500P)^2^+0.3497P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom refine Is hydrogen treatment constr _refine_ls_extinction_method none _refine_ls_number_reflns 5321 _refine_ls_number_parameters 356 refine ls number restraints 0 _refine_ls_R_factor_all 0.0931 _refine_ls_R_factor_gt 0.053 refine Is wR factor ref 0.1285 _refine_ls_wR_factor_gt 0.1122 _refine_ls_goodness_of_fit_ref 1.015 refine Is restrained S all 1.015 _refine_ls_shift/su_max 0 _refine_ls_shift/su_mean 0 refine diff density max 0.618 refine diff density min -0.711 _refine_diff_density_rms 0.119 -----# ATOMIC TYPES, COORDINATES AND THERMAL PARAMETERS # Ħ -----#

#

loop_

;

_atom_type_symbol

_atom_type_description

_atom_type_scat_dispersion_real

_atom_type_scat_dispersion_imag

_atom_type_scat_source

C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0 0 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O 0 0.0106 0.006 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Zn Zn 0.2839 1.4301 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag atom site refinement flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C -0.2924(7) 0.0679(4) -0.0085(3) 0.0273(12) Uani 1 1 d . . . C2 C -0.2285(7) 0.0445(5) 0.0570(3) 0.0289(12) Uani 1 1 d . . . C3 C -0.1527(7) 0.0174(5) 0.1313(3) 0.0301(13) Uani 1 1 d ... C4 C -0.0839(7) -0.0095(5) 0.1954(3) 0.0290(13) Uani 1 1 d . . . C11 C -0.3618(7) 0.0880(5) -0.0896(3) 0.0257(12) Uani 1 1 d . . . C12 C -0.4466(7) 0.0376(5) -0.2248(3) 0.0350(14) Uani 1 1 d . . . H12 H -0.4729 -0.0079 -0.2794 0.042 Uiso 1 1 calc R . . C13 C -0.4657(7) 0.1675(5) -0.1979(3) 0.0331(14) Uani 1 1 d . . . H13 H -0.5082 0.226 -0.2316 0.04 Uiso 1 1 calc R . . C14 C -0.3425(9) -0.1474(5) -0.1560(4) 0.0456(17) Uani 1 1 d . . . H14A H -0.3336 -0.1896 -0.2129 0.068 Uiso 1 1 calc R . . H14B H -0.4291 -0.1935 -0.1319 0.068 Uiso 1 1 calc R . . H14C H -0.2381 -0.1483 -0.1224 0.068 Uiso 1 1 calc R . . C21 C -0.0062(6) -0.0549(4) 0.2665(3) 0.0247(12) Uani 1 1 d . . . C22 C 0.0972(7) -0.1947(5) 0.3456(3) 0.0303(13) Uani 1 1 d ... H22 H 0.1315 -0.2709 0.3642 0.036 Uiso 1 1 calc R . . C23 C 0.1109(7) -0.0718(5) 0.3911(3) 0.0305(13) Uani 1 1 d . . . H23 H 0.1577 -0.0497 0.447 0.037 Uiso 1 1 calc R . . C24 C -0.0127(8) -0.2894(5) 0.1940(3) 0.0388(15) Uani 1 1 d . . . H24A H 0.086 -0.3008 0.1649 0.058 Uiso 1 1 calc R . . H24B H -0.1007 -0.2661 0.1561 0.058 Uiso 1.1 calc B H24C H -0.0466 -0.37 0.2132 0.058 Uiso 1 1 calc R . . C31 C -0.2753(7) 0.2680(5) 0.4119(3) 0.0280(12) Uani 1 1 d . . . C32 C -0.4198(7) 0.3415(5) 0.4422(4) 0.0385(14) Uani 1 1 d . . . H32A H -0.4247 0.4206 0.4175 0.058 Uiso 1 1 calc R . . H32B H -0.4052 0.3635 0.5029 0.058 Uiso 1 1 calc R . . H32C H -0.5219 0.2872 0.4255 0.058 Uiso 1 1 calc R . . C41 C 0.1878(6) 0.4301(5) 0.3324(3) 0.0232(11) Uani 1 1 d . . . C42 C 0.2989(8) 0.4903(5) 0.2755(3) 0.0337(13) Uani 1 1 d . . . H42A H 0.3228 0.5823 0.2966 0.051 Uiso 1 1 calc R . . H42B H 0.2435 0.4795 0.2192 0.051 Uiso 1 1 calc R . . H42C H 0.4013 0.4475 0.2744 0.051 Uiso 1 1 calc R . . C51 C 0.2205(6) 0.2859(5) 0.5539(3) 0.0253(12) Uani 1 1 d . . . C52 C 0.3286(7) 0.2456(5) 0.6245(3) 0.0376(14) Uani 1 1 d . . . H52A H 0.4426 0.2483 0.6111 0.056 Uiso 1 1 calc R . . H52B H 0.2927 0.1578 0.6318 0.056 Uiso 1 1 calc R . . H52C H 0.3201 0.3048 0.6759 0.056 Uiso 1 1 calc R . . C61 C -0.2172(6) 0.6081(5) -0.0299(3) 0.0240(11) Uani 1 1 d . . . C62 C -0.0508(7) 0.6690(5) -0.0461(4) 0.0408(15) Uani 1 1 d . . . H62A H -0.0411 0.7607 -0.0227 0.061 Uiso 1 1 calc R . . H62B H -0.0423 0.6592 -0.1061 0.061 Uiso 1 1 calc R . . H62C H 0.037 0.6258 -0.0198 0.061 Uiso 1 1 calc R . . C71 C -0.6428(6) 0.5574(5) -0.1406(3) 0.0254(12) Uani 1 1 d . . . C72 C -0.7324(7) 0.6002(5) -0.2173(3) 0.0339(13) Uani 1 1 d . . . H72A H -0.8472 0.6107 -0.2079 0.051 Uiso 1 1 calc R . . H72B H -0.7267 0.5348 -0.2662 0.051 Uiso 1 1 calc R . . H72C H -0.6803 0.6824 -0.2268 0.051 Uiso 1 1 calc R . . N11 N -0.4123(5) 0.1978(4) -0.1133(2) 0.0233(9) Uani 1 1 d . . . N12 N -0.3829(6) -0.0115(4) -0.1571(3) 0.0284(10) Uani 1 1 d . . . N21 N 0.0454(6) 0.0156(4) 0.3423(3) 0.0269(10) Uani 1 1 d . . . N22 N 0.0228(5) -0.1844(4) 0.2672(3) 0.0263(10) Uani 1 1 d . . . O31 O -0.1287(4) 0.3186(3) 0.4409(2) 0.0280(8) Uani 1 1 d . . . O32 O -0.2938(5) 0.1667(4) 0.3607(3) 0.0561(13) Uani 1 1 d . . . O41 O 0.1475(4) 0.5001(3) 0.3967(2) 0.0271(8) Uani 1 1 d . . . O42 O 0.1411(5) 0.3074(3) 0.3098(2) 0.0295(9) Uani 1 1 d . . . O51 O 0.1637(4) 0.3980(3) 0.5654(2) 0.0273(8) Uani 1 1 d . . . O52 O 0.1937(5) 0.2030(3) 0.4867(2) 0.0297(9) Uani 1 1 d . . . O61 O -0.2545(4) 0.4906(3) -0.0621(2) 0.0308(9) Uani 1 1 d . . . O62 O -0.3080(5) 0.6768(3) 0.0159(2) 0.0348(9) Uani 1 1 d . . . O71 O -0.5851(5) 0.4467(3) -0.1482(2) 0.0313(9) Uani 1 1 d . . . O72 O -0.6335(5) 0.6366(3) -0.0725(2) 0.0329(9) Uani 1 1 d . . . Zn1 Zn 0 0.5 0.5 0.0213(2) Uani 1 2 d S . . Zn2 Zn -0.46055(7) 0.37417(5) -0.04817(3) 0.02167(17) Uani 1 1 d . . . Zn3 Zn 0.03528(8) 0.20684(5) 0.38644(4) 0.02283(17) Uani 1 1 d . . .

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.032(3) 0.020(2) 0.031(3) 0.007(2) 0.004(3) 0.002(2)

C2 0.033(3) 0.023(2) 0.031(3) 0.004(2) 0.003(3) 0.001(2) C3 0.036(3) 0.024(3) 0.028(3) 0.000(2) 0.002(3) 0.002(2) C4 0.035(3) 0.022(3) 0.027(3) -0.003(2) 0.001(3) -0.002(2) C11 0.025(3) 0.027(3) 0.027(3) 0.008(2) 0.009(2) 0.002(2) C12 0.045(4) 0.035(3) 0.022(3) -0.006(2) 0.006(3) 0.001(3) C13 0.051(4) 0.029(3) 0.020(3) 0.005(2) -0.001(3) 0.008(3) C14 0.065(5) 0.017(3) 0.053(4) -0.002(3) 0.014(3) 0.003(3) C21 0.025(3) 0.023(2) 0.026(3) 0.004(2) 0.003(2) 0.001(2) C22 0.036(3) 0.019(2) 0.037(3) 0.008(2) 0.004(3) 0.003(2) C23 0.040(4) 0.027(3) 0.024(3) 0.006(2) 0.000(2) 0.002(2) C24 0.047(4) 0.025(3) 0.037(3) -0.009(3) -0.011(3) 0.001(3) C31 0.029(3) 0.029(3) 0.025(3) 0.002(2) 0.002(2) -0.002(2) C32 0.021(3) 0.046(3) 0.047(4) 0.001(3) 0.006(3) 0.000(2) C41 0.019(3) 0.028(3) 0.022(3) 0.007(2) -0.002(2) 0.000(2) C42 0.046(4) 0.030(3) 0.028(3) 0.010(2) 0.019(3) 0.000(2) C51 0.022(3) 0.027(3) 0.027(3) 0.008(2) 0.002(2) 0.001(2) C52 0.041(4) 0.039(3) 0.031(3) 0.003(3) -0.005(3) 0.008(3) C61 0.022(3) 0.030(3) 0.021(3) 0.010(2) -0.002(2) -0.004(2) C62 0.031(3) 0.042(3) 0.051(4) 0.011(3) 0.013(3) -0.004(3) C71 0.019(3) 0.029(3) 0.029(3) 0.008(2) 0.001(2) 0.001(2) C72 0.036(3) 0.041(3) 0.025(3) 0.004(2) 0.000(3) 0.011(3) N11 0.029(3) 0.023(2) 0.018(2) 0.0051(17) 0.0028(18) 0.0022(18) N12 0.040(3) 0.022(2) 0.023(2) 0.0014(18) 0.006(2) 0.0017(19) N21 0.036(3) 0.022(2) 0.022(2) 0.0011(18) 0.001(2) 0.0025(19) N22 0.031(3) 0.022(2) 0.024(2) 0.0021(18) 0.000(2) 0.0009(18) 031 0.023(2) 0.0239(17) 0.034(2) -0.0030(16) 0.0015(16) -0.0004(15) 032 0.045(3) 0.044(2) 0.067(3) -0.023(2) -0.005(2) -0.002(2) 041 0.037(2) 0.0251(17) 0.0188(18) -0.0014(15) 0.0100(16) -0.0003(15) O42 0.041(2) 0.0217(17) 0.0263(19) 0.0033(15) 0.0088(17) 0.0001(15) 051 0.029(2) 0.0248(17) 0.0259(19) 0.0000(15) -0.0037(16) 0.0039(15) 052 0.038(2) 0.0240(17) 0.0246(19) -0.0025(15) -0.0035(17) 0.0039(16) O61 0.029(2) 0.0292(19) 0.035(2) 0.0055(17) 0.0077(17) 0.0000(16) 062 0.031(2) 0.0330(19) 0.041(2) 0.0039(18) 0.0125(18) -0.0001(17) 071 0.037(2) 0.0308(19) 0.027(2) 0.0057(16) 0.0020(17) 0.0054(17) 072 0.043(2) 0.0347(19) 0.0218(19) 0.0040(16) 0.0021(17) 0.0112(17) Zn1 0.0255(5) 0.0185(4) 0.0194(4) 0.0002(3) 0.0043(3) 0.0022(3) Zn2 0.0249(3) 0.0189(3) 0.0213(3) 0.0020(2) 0.0039(2) 0.0033(2) Zn3 0.0293(4) 0.0183(3) 0.0206(3) 0.0010(2) 0.0038(3) 0.0030(2)

#------# MOLECULAR GEOMETRY #-----

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. #

loop

_____geom_bond_atom_site_label_1
 __geom_bond_atom_site_label_2
 __geom_bond_distance
 __geom_bond_publ_flag
C1 C2 1.193(7) . ?
C1 C11 1.420(7) . ?
C2 C3 1.365(8) . ?
C3 C4 1.202(7) . ?
C4 C21 1.407(7) . ?
C11 N11 1.323(6) . ?
C11 N12 1.366(6) . ?
C12 N12 1.340(7) . ?
C12 C13 1.366(7) . ?

C13 N11 1.369(6) . ? C14 N12 1.460(6) . ? C21 N21 1.338(6) . ? C21 N21 1.338(6) . ? C22 C23 1.357(6) . ? C22 N22 1.367(6) . ? C23 N21 1.379(6) . ? C23 N21 1.379(6) . ? C31 O32 1.221(5) . ? C31 O31 1.281(6) . ? C31 O31 1.281(6) . ? C31 C32 1.503(7) . ? C41 O41 1.245(5) . ? C41 O42 1.286(5) . ? C41 O42 1.266(5) . ? C41 O42 1.263(6) . ? C51 O51 1.263(6) . ? C51 O52 1.264(5) . ? C61 O61 1.251(5) . ? C61 O62 1.255(6) . ? C71 O71 1.252(6) . ? C71 O72 1.255(5) . ? C71 C72 1.510(7) . ? N11 Zn2 2.034(4) . ? N21 Zn3 2.002(4) . ? O31 Zn3 1.980(3) . ? O31 Zn3 1.980(3) . ? O31 Zn3 1.938(4) . ? O41 Zn1 2.118(3) . ? O42 Zn3 1.938(4) . ? O51 Zn2 2.035(3) . ? O52 Zn3 1.971(3) . ? O62 Zn2 2.036(4) 2_465 ? C71 O51 2.052(3) 2_566 ? Zn1 O31 2.129(3) 2_566 ?
Zn2 Zn2 2.9489(10) 2_465 ?
loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 C11 175.6(5) ? C1 C2 C3 178.9(6) ? C4 C3 C2 178.1(6) ? C3 C4 C21 174.0(5) ? N11 C11 N12 109.9(4) ? N11 C11 C1 128.4(4) ? N12 C11 C1 121.6(4) ? N12 C12 C13 106.8(4) ? N12 C12 C13 N11 109.2(5) ? N21 C21 N22 109.7(4) ? N21 C21 C4 127.3(4) ? N22 C21 C4 122.9(4) ? C23 C22 N22 106.4(4) ? C22 C23 N21 110.0(4) . ?
O32 C31 O31 120.5(5) ? O32 C31 C32 122.7(5) ?

O31 C31 C32 116.8(4) . . ? O41 C41 O42 124.9(5) . . ? O41 C41 C42 119.1(4) . . ? O42 C41 C42 116.0(4) . . ? O51 C51 O52 125.4(5) . . ? O51 C51 C52 118.4(4) . . ? O52 C51 C52 116.1(4) . . ? O61 C61 O62 124.3(5) . . ? O61 C61 C62 117.3(5) . . ? O62 C61 C62 118.4(4) . . ? O71 C71 O72 124.6(5) . . ? O71 C71 C72 118.9(4) . . ? O72 C71 C72 116.5(4) . . ? C11 N11 C13 106.2(4) . . ? C11 N11 Zn2 133.3(3) . . ? C13 N11 Zn2 119.3(3) . . ? C12 N12 C11 107.9(4) . . ? C12 N12 C14 126.0(4) . . ? C11 N12 C14 126.1(5) . . ? C21 N21 C23 106.0(4) . . ? C21 N21 Zn3 131.1(3) ...? C23 N21 Zn3 122.9(3) . . ? C22 N22 C21 107.8(4) . . ? C22 N22 C24 127.3(4) . . ? C21 N22 C24 124.8(4) . . ? C31 O31 Zn3 108.0(3) . . ? C31 O31 Zn1 141.3(3) . . ? Zn3 O31 Zn1 108.16(16) . . ? C31 O32 Zn3 77.8(3) . . ? C41 O41 Zn1 143.2(3) . . ? C41 O42 Zn3 121.1(3) . . ? C51 O51 Zn1 136.6(3) . . ? C51 O52 Zn3 128.7(3) . . ? C61 O61 Zn2 128.1(3) . . ? C61 O62 Zn2 128.2(3) . 2_465 ? C71 O71 Zn2 123.2(3) . . ? C71 O72 Zn2 132.8(3) . 2_465 ? O51 Zn1 O51 180.00(16) 2_566.? O51 Zn1 O41 86.43(14) 2_566 . ? O51 Zn1 O41 93.57(14) . . ? O51 Zn1 O41 93.57(14) 2_566 2_566 ? O51 Zn1 O41 86.43(14) . 2_566 ? O41 Zn1 O41 180.0000(10) . 2_566 ? O51 Zn1 O31 90.50(13) 2_566 . ? O51 Zn1 O31 89.50(13) . . ? O41 Zn1 O31 90.54(13) . . ? O41 Zn1 O31 89.46(13) 2_566 . ? O51 Zn1 O31 89.50(13) 2_566 2_566 ? O51 Zn1 O31 90.50(13) . 2_566 ? O41 Zn1 O31 89.46(13) . 2_566 ? O41 Zn1 O31 90.54(13) 2_566 2_566 ? O31 Zn1 O31 180.00(18) . 2_566 ? O51 Zn1 Zn3 109.54(8) 2_566 . ? O51 Zn1 Zn3 70.46(8) . . ? O41 Zn1 Zn3 64.42(8) . . ? O41 Zn1 Zn3 115.58(8) 2_566 . ? O31 Zn1 Zn3 34.41(9) . . ? O31 Zn1 Zn3 145.59(9) 2_566 . ? N11 Zn2 O61 102.06(15) . . ? N11 Zn2 O62 98.77(15) . 2 465 ? O61 Zn2 O62 158.97(14) . 2_465 ? N11 Zn2 O72 102.81(15) . 2_465 ? O61 Zn2 O72 89.47(15) . 2_465 ? O62 Zn2 O72 88.74(16) 2_465 2_465 ? N11 Zn2 O71 97.71(14) . . ? O61 Zn2 O71 88.53(15) . . ? O62 Zn2 O71 85.82(15) 2_465 . ? O72 Zn2 O71 159.35(14) 2_465 . ?

N11 Zn2 Zn2 178.24(12) . 2_465 ? O61 Zn2 Zn2 79.68(10) . 2_465 ? O62 Zn2 Zn2 79.51(10) 2_465 2_465 ? O72 Zn2 Zn2 76.86(10) 2_465 2_465 ? O71 Zn2 Zn2 82.56(9) . 2_465 ? O42 Zn3 O52 108.98(16) . . ? O42 Zn3 O31 106.70(15) . . ? O52 Zn3 O31 99.03(14) . . ? O42 Zn3 N21 108.03(16) . . ? O52 Zn3 N21 93.80(15) . . ? O31 Zn3 N21 136.42(16) . . ? O42 Zn3 O32 116.02(16) . . ? O52 Zn3 O32 132.16(16) . . ? O31 Zn3 O32 53.72(12) . . ? N21 Zn3 O32 87.35(15) . . ? O42 Zn3 Zn1 84.41(9) . . ? O52 Zn3 Zn1 78.36(9) . . ? O31 Zn3 Zn1 37.43(9) . . ? N21 Zn3 Zn1 167.06(12) . . ? O32 Zn3 Zn1 90.35(8) . . ?