Hydrogen bond-assisted solid-state formation of a salt-bridged calix[5]arene pseudo-dimer

Giovanna Brancatelli,^{*a*} Sebastiano Pappalardo,^{*b*} Giuseppe Gattuso,^{*c*} Anna Notti,^{*c*} Ilenia Pisagatti,^{*c*} Melchiorre F. Parisi^{**c*} and Silvano Geremia,^{**a*}

 ^a Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via L. Giorgieri 1, 34127 Trieste, Italy.
^b Dipartimento di Scienze Chimiche, Università di Catania, viale A. Doria 6, 95125 Catania, Italy.
^c Dipartimento di Scienze Chimiche, Università di Messina, viale F. Stagno d'Alcontres 31,

98166 Messina, Italy.

Electronic Supplementary Information

	$2 (n-\mathrm{BuNH_3}^+ \subset \mathbf{1a}^- \cdot \mathbf{1a} \cdot \mathrm{H} \supset \mathrm{CH_3CN})$
Empirical formula	$2(C_{81} H_{119} O_7), 2(C_4 H_{12} N_1), 2(C_{81} H_{120} O_7), 2(C_2 H_3 N_1)$
Formula weight	5051.46
Temperature (K)	100(2)
Wavelength (Å)	0.77491
Crystal system	Triclinic
Space group	Ρī
Unit cell dimensions (Å, °)	$a = 21.54(2), \alpha = 90.92(4)$
	$b = 25.71(2), \beta = 88.87(2)$
	$c = 31.95(1), \gamma = 74.53(2)$
Volume (Å ³)	17045(19)
Ζ	2
$\rho_{\rm calcd}({\rm g/cm}^3)$	0.984
$\mu (\mathrm{mm}^{-1})$	0.049
Reflections collected	39242
Data / restraints / parameters	38444 / 102 / 3422
GooF	1.047
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.1276, wR_2 = 0.3302$
R indices (all data)	$R_1 = 0.1352, wR_2 = 0.3342$

Table S1 Crystal data and structure refinement for	(<i>n</i> -BuNH ₃ ⁺ ⊂1a ⁻ ·1a ·H⊃CH ₃ CN	I)
--	---	----

D-H····A	<i>d</i> (D – H)	<i>d</i> (H···A)	$d(\mathbf{D}\cdots\mathbf{A})$	(DHA)
n -BuNH ₃ ⁺ \subset 1 $\mathbf{a}^{-}(\mathbf{I})$				
$N(1)-H(1b)\cdots O(11)$	0.89	2.00	2.767(7)	143.4
$N(1)-H(1b)\cdots O(1g)$	0.89	2.12	2.820(7)	134.8
$N(1)-H(1a)\cdots O(4g)$	0.89	2.01	2.815(7)	149.4
$N(1)-H(1c)\cdots O(5g)$	0.89	2.00	2.857(7)	162.2
$C(2)-H(2b)\cdots Cg(B)^{a}$	0.97	2.98	3.850(7)	149.3
$C(2)-H(2a)\cdots Cg(B')^{a}$	0.97	2.85	3.711(7)	148.0
$C(3)-H(3b)\cdots Cg(C)^{a}$	0.97	2.86	3.800(8)	162.3
$C(3)-H(3a)\cdots Cg(C')^{a}$	0.97	2.97	3.889(9)	159.2
CH ₃ CN⊂ 1a ·H (I)				
$C(8)-H(8a)\cdots Cg(A)^{a}$	0.96	2.64	3.561(8)	162.1
$C(8)-H(8c)\cdots Cg(C')^{a}$	0.96	2.65	3.582(8)	163.3
$O(6l)-H(6l)\cdots O(1m)$	0.82	1.67	2.445(8)	158.0
n -BuNH ₃ ⁺ \subset 1 \mathbf{a}^{-} (II)				
N(9)-H(9b)O(111)	0.89	2.04	2.772(7)	138.7
$N(9)-H(9b)\cdots O(11g)$	0.89	2.04	2.791(7)	140.7
$N(9)-H(9c)\cdots O(13g)$	0.89	1.90	2.783(6)	172.9
$N(9)-H(9a)\cdots O(14g)$	0.89	2.13	2.828(7)	134.5
$C(10)-H(10b)\cdots Cg(B)^{a}$	0.97	2.70	3.636(7)	161.8
$C(10)-H(10a)\cdots Cg(B')^a$	0.97	2.95	3.702(7)	135.6
$C(11)-H(11b)\cdots Cg(C)^{a}$	0.97	3.20	4.161(7)	170.9
$C(11)-H(11a)\cdots Cg(C')^a$	0.97	2.83	3.690(8)	147.9
CH ₃ CN⊂ 1a ·H (II)				
$C(16)-H(16a)\cdots Cg(A)^{a}$	0.96	2.63	3.547(7)	160.4
$C(16)-H(16c)\cdots Cg(C')^a$	0.96	2.59	3.529(8)	167.5
O(16l)-H(16l)···O(11m)	0.82	1.77	2.462(7)	141.4

Table S2. H-bond and CH— π interactions detected in the crystal structure of pseudo-dimers I and II (*n*-BuNH₃⁺ \subset 1 a^- ·1a·H \supset CH₃CN) [Å, °].

^aC_g (A), (B), (B'), (C), (C'): gravity centres of the A, B, B', C and C' aryl rings, respectively.

Table S3.	Comparison	of the relevant	conformational	parameters of t	the two calix[5]arene units
present in	the crystal st	ructure of pseu	do-dimers I and	$II (n-BuNH_3^+C)$	⊐1a⁻·1a ·H⊃C	H ₃ CN).

Pseudo-dimer		$\theta_{\rm A}(^{\circ})^a$	$\theta_{\rm B}(^{\circ})^a$	$\theta_{\mathrm{B}'}(^{\circ})^{a}$	$\theta_{\rm C}(^{\circ})^a$	$\theta_{C'}(\circ)^a$
(I)	<i>n</i> -BuNH ₃ ⁺ ⊂ 1 a [−]	130.1(2)	105.4(2)	99.4(1)	118.3(2)	120.6(1)
	CH₃CN⊂ 1a ·H	89.8(2)	126.1(2)	142.9(1)	124.9(1)	82.4(1)
(II)	<i>n</i> -BuNH ₃ ⁺ ⊂1a ⁻	129.9(1)	96.1(1)	130.5(1)	115.9(2)	104.9(1)
	CH₃CN⊂ 1a ·H	86.5(2)	132.1(2)	150.9(1)	123.4(1)	80.6(2)

^{*a*}Dihedral angles calculated between the least-square mean planes of rings A, B, B', C and C' and the macrocycle reference plane defined by the five bridging methylene carbon atoms.

Fig. S1 The symmetric unit of the supramolecular aggregates (n-BuNH₃⁺ \subset 1a⁻·1a·H \supset CH₃CN). The two pseudodimers I and II are depicted in grey and violet, respectively.

General Experimental. Calix[5]arene **1a**·H was prepared according to a literature procedure.¹ *n*-Butylammine and CD₂Cl₂ were freshly distilled over CaH₂ prior to use. ¹H NMR spectra (500 MHz) were recorded at 273±0.1 K in CD₂Cl₂. Sample solutions of **1a**·H (1.0 mM) and a 2:1 mixture of **1a**·H and *n*-BuNH₂ (1.0 and 0.5 mM, respectively), used for ¹H NMR and Diffusion-Ordered Spectroscopy (DOSY) analysis, were directly prepared in the NMR tube from CD₂Cl₂ stock solutions of the calixarene and the amine (10.0 and 100.0 mM, respectively).

¹*H* NMR Studies.

Fig. S2 ¹H NMR spectra (500 MHz, CD₂Cl₂, 273 K) of: a) $[1a \cdot H] = 1.0$ mM and b) $[1a \cdot H] = 1.0$ mM and $[n-BuNH_2] = 0.5$ mM.

^{1.} C. Capici, G. Gattuso, A. Notti, M. F. Parisi, S. Pappalardo, G. Brancatelli and S. Geremia, J. Org. Chem., 2012, 77, 9668–9675.

Diffusion-Ordered Spectroscopy. DOSY experiments were carried out on a 500 MHz NMR spectrometer equipped with a z-gradient system capable of producing pulse gradients up to 50 gauss \cdot cm⁻¹. All spectra were recorded in CD₂Cl₂ at 273±0.1 K, using a gradient stimulated echo with spin-lock and convection compensation pulse sequence.²

Diffusion coefficient (*D*) values, reported in Table S4, were calculated from DOSY experiments carried out on a 2:1 mixture of $1\mathbf{a} \cdot \mathbf{H}$ and *n*-BuNH₂ (1.0 and 0.5 mM, respectively), $1\mathbf{a} \cdot \mathbf{H}$ (1.0 mM) as well as the 'model' bis-calix[5]arene 2 (1.0 mM). The latter was chosen as a model compound for a species with a molecular weight roughly similar to the supramolecular pseudo-dimer (*n*-BuNH₃⁺ $\subset 1\mathbf{a}^- \cdot 1\mathbf{a} \cdot \mathbf{H} \supset CH_3CN$) formed in the solid state.

Fig. S3 DOSY plot (500 MHz, CD_2Cl_2 , 273 K) of a 2:1 mixture of $1a \cdot H$ and *n*-BuNH₂ (1.0 and 0.5 mM, respectively).

^{2.} A. Jerchow and N. Müller, J. Magn. Reson., 1997, 125, 372-375.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2013

	$D[\times 10^{-10} \cdot m^2 \cdot s^{-1}]$				
Peak	(δ [ppm])				
	n -BuNH ₃ ⁺ \subset 1 \mathbf{a}^-	1a ∙H	2		
γ-CH ₂	4.70±0.30	_	_		
	(-1.99)				
δ-CH ₃	4.78±0.16				
	(-1.04)				
OCH ₂	4.79±0.20	4.90±0.09	3.88±0.03		
	(4.07)	(3.93)	(3.40)		
Ar-H	4.84 ± 0.08	4.93±0.04	3.75±0.01		
	(7.13)	(6.93)	(7.13)		
Ar-H	4.75±0.07	4.94±0.03	3.76±0.01		
	(7.14)	(6.96)	(7.20)		
CHDCl ₂ (residual)	23.85±0.03	23.90±0.03	23.84±0.02		
	(5.32)	(5.32)	(5.32)		

Table S4. Diffusion coefficients (*D*) for *n*-BuNH₃⁺ \subset 1a⁻, 1a H and 2.^{*a*}

^{*a*}Diffusion experiments were recorded at 273 K on 1.0 mM CD_2Cl_2 solutions. In the case of the *n*-BuNH₃⁺ \subset 1 a^- complex, a CD_2Cl_2 solution of 1a·H and *n*-BuNH₂ (1.0 and 0.5 mM, respectively) solution was used.