SUPPORTING INFORMATION

Structural diversities of charge transfer organic complexes. Focus on benzenoid hydrocarbons and 7,7,8,8tetracyanoquinodimethane

M. A. Dobrowolski, G. Garbarino, M. Mezouar, A. Ciesielski, M. K. Cyrański

Figure S1. The molecular structure of (1) showing displacement ellipsoid and labeling.	2
Figure S2. The molecular structure of (2) showing displacement ellipsoid and labeling.	2
Figure S3. The molecular structure of (3) showing displacement ellipsoid and labeling.	3
Figure S4. The molecular structure of (4) showing displacement ellipsoid and labeling.	3
Figure S5. The molecular structure of (5) showing displacement ellipsoid and labeling.	4
Figure S6. The molecular structure of (6) showing displacement ellipsoid and labeling.	4
Figure S7. The molecular structure of (7) showing displacement ellipsoid and labeling.	5
Figure S8. Fingerprint plots visualizing d_e and d_i for N···H (a) and C···C (b), (c); C-H··· π and	
CH contacts (d) (including reciprocal ones) generated for TCNQ and perylene molecules in	6
complex (2).	
Figure S9. Fingerprint plots visualizing d_e and d_i for N···H (a) and C···C (b), (c); C-H··· π and	
CH contacts (d) (including reciprocal ones) generated for TCNQ and perylene molecules in	7
complex (including reciprocal ones) generated for TCNQ and pyrene molecules in complex (3).	
Figure S10. Fingerprint plots visualizing d_e and d_i for C···C (a), (b) and C···H (c) contacts	7
(including reciprocal ones) generated for TCNQ and pyrene molecules in complex (4).	/
Figure S11. Fingerprint plots visualizing d_e and d_i for N···H (a) and C···C contacts (b), (c)	7
(including reciprocal ones) generated for TCNQ and chrysene molecules in complex (5).	/
Figure S12. Fingerprint plots visualizing d_e and d_i for N···H (a), C···H (b), (e) and C···C contacts	
(c), (d) (including reciprocal ones) generated for TCNQ and phenanthrene molecules in complex	8
(6) .	
Figure S13. Fingerprint plots visualizing d_e and d_i for N···H (a) and C···H contacts (b) (including	8
reciprocal ones) generated for TCNQ and naphthalene molecules in complex (7).	0
Table S1. Bond lengths in [Å] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-	0
TCNQ complex (2), pyrene-TCNQ (2:1) complex (3).	2
Table S2. Bond lengths in [Å] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex	10
(5), phenanthrene-TCNQ (2:1) complex (6).	10
Table S3. Bond lengths in [Å] for naphthalene-TCNQ complex (7).	11
Table S4. Bond angles [°] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-TCNQ	12
complex (2), pyrene-TCNQ (2:1) complex (3).	12
Table S5. Bond angles [°] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex (5),	12
phenanthrene-TCNQ complex (6).	15
Table S6. Bond angles [°] for naphthalene-TCNQ complex (7).	14
Table S7. Torsion angles [°] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-	15
TCNQ complex (2) , pyrene-TCNQ $(2:1)$ complex (3) .	15
Table S8. Torsion angles [°] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex (5),	16
phenanthrene-TCNQ complex (6).	10
Table S9. Torsion angles [°] for naphthalene-TCNQ complex (7).	17

Fig. S1. The molecular structure of (1) showing displacement ellipsoid at the 50% probability level.

Fig. S2. The molecular structure of (2) showing displacement ellipsoid at the 50% probability level.

Fig. S3. The molecular structure of (3) showing displacement ellipsoid at the 50% probability level.

Fig. S4. The molecular structure of (4) showing displacement ellipsoid at the 50% probability level.

Fig. S5. The molecular structure of (5) showing displacement ellipsoid at the 50% probability level.

Fig. S6. The molecular structure of (6) showing displacement ellipsoid at the 50% probability level.

Fig. S7. The molecular structure of (7) showing displacement ellipsoid at the 50% probability level.

Fig. S8. Fingerprint plots visualizing d_e and d_i for N···H (**a**), C···C (**b**), (**c**); C-H··· π and C···H contacts (**d**) (including reciprocal ones) generated for TCNQ and perylene molecules in complex (**2**).

Fig. S9. Fingerprint plots visualizing d_e and d_i for N···H (**a**) and C···C contacts (**b**), (**c**)); C-H··· π and C···H contacts (**d**) (including reciprocal ones) generated for TCNQ and pyrene molecules in complex (**3**).

Fig. S10. Fingerprint plots visualizing d_e and d_i for C···C (**a**), (**b**) and C···H (**c**) contacts (including reciprocal ones) generated for TCNQ and pyrene molecules in complex (**4**).

Fig. S11. Fingerprint plots visualizing d_e and d_i for N···H (**a**) and C···C contacts (**b**), (**c**) (including reciprocal ones) generated for TCNQ and chrysene molecules in complex (**5**).

Fig. S12. Fingerprint plots visualizing d_e and d_i for N···H (**a**), C···H (**b**), (**e**) and C···C contacts (**c**), (**d**) (including reciprocal ones) generated for TCNQ and phenanthrene molecules in complex (**6**).

Fig. S13. Fingerprint plots visualizing d_e and d_i for N···H (**a**) and C···H contacts (**b**) (including reciprocal ones) generated for TCNQ and naphthalene molecules in complex (**7**).

Compound/Parameter	(1)	(2)		(3)	
C(6)-C(7)	1.393(3)	C(4)-C(3)	1.389(5)	C(1)-C(3)	1.379(5)
C(6)-C(5)	1.394(3)	C(4)-C(5)	1.437(4)	C(1)-C(5)	1.412(6)
C(3)-C(4)	1.395(3)	C(4)-C(8)	1.462(4)	C(1)-C(2)	1.445(6)
C(3)-C(2)	1.401(3)	C(3)-C(2)	1.405(5)	C(2)-C(5)#1	1.363(6)
C(13)-C(14)	1.378(3)	C(6)-C(1)	1.414(5)	C(3)-C(4)	1.411(6)
C(13)-C(11)	1.435(3)	C(6)-C(5)	1.422(4)	C(3)-C(6)	1.441(6)
C(13)-C(12)	1.445(3)	C(6)-C(7)	1.427(5)	N(7)-C(4)	1.157(5)
C(10)-C(4)	1.424(3)	C(8)-C(9)	1.398(4)	N(8)-C(6)	1.144(5)
C(10)-C(9)	1.425(3)	C(8)-C(5)#1	1.433(5)	C(9)-C(11)	1.419(6)
C(10)-C(5)	1.432(3)	C(10)-C(7)#1	1.364(5)	C(9)-C(10)	1.427(6)
C(21)-C(19)	1.415(3)	C(10)-C(9)	1.405(5)	C(9)-C(9)#2	1.428(8)
C(21)-C(18)	1.418(3)	C(5)-C(8)#1	1.433(5)	C(10)-C(12)	1.396(6)
C(21)-C(21)#1	1.419(4)	C(2)-C(1)	1.382(5)	C(10)-C(13)	1.430(6)
C(4)-C(5)#2	1.461(3)	C(7)-C(10)#1	1.364(5)	C(11)-C(15)	1.406(6)
C(5)-C(4)#2	1.461(3)	N(1)-C(15)	1.154(4)	C(11)-C(14)	1.434(6)
C(16)-N(2)	1.149(3)	N(2)-C(16)	1.150(4)	C(12)-C(16)	1.397(6)
C(16)-C(14)	1.427(3)	C(13)-C(14)	1.376(4)	C(13)-C(14)#2	1.347(6)
C(8)-C(7)	1.368(3)	C(13)-C(11)	1.436(4)	C(14)-C(13)#2	1.347(6)
C(8)-C(9)	1.411(3)	C(13)-C(12)	1.443(5)	C(15)-C(16)	1.371(6)
C(2)-C(1)	1.366(3)	C(14)-C(15)	1.430(5)	C(17)-C(20)	1.418(6)
C(11)-C(12)#3	1.349(3)	C(14)-C(16)	1.436(5)	C(17)-C(18)	1.422(6)
C(15)-N(1)	1.153(3)	C(12)-C(11)#2	1.358(5)	C(17)-C(17)#3	1.430(8)
C(15)-C(14)	1.432(3)	C(20)-C(21)	1.413(5)	C(18)-C(23)	1.401(6)
C(9)-C(1)	1.415(3)	C(20)-C(19)	1.417(5)	C(18)-C(19)	1.415(6)
C(19)-C(20)	1.349(4)	C(20)-C(20)#3	1.437(7)	C(19)-C(21)	1.355(6)
C(18)-C(17)	1.373(4)	C(19)-C(18)	1.407(5)	C(20)-C(22)	1.385(6)
C(20)-C(17)#1	1.410(4)	C(19)-C(23)	1.434(5)	C(20)-C(21)#3	1.439(6)
		C(21)-C(22)	1.399(5)	C(22)-C(24)	1.389(7)
		C(21)-C(24)	1.446(5)	C(23)-C(24)	1.385(7)
		C(18)-C(17)	1.393(5)		
		C(23)-C(24)#3	1.350(5)		
		C(22)-C(17)	1.385(5)		

Table S1. Bond lengths in [Å] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-TCNQ complex (2), pyrene-TCNQ (2:1) complex (3).

Compound/Parameter	(4)	(5)		(6)	
C(7)-C(8)	1.4218(17)	C(1)-C(4)	1.3803(15)	C(1)-C(2)	1.375(16)
C(7)-C(6)	1.4232(17)	C(1)-C(3)	1.4493(15)	C(1)-C(6)	1.378(14)
C(7)-C(7)#1	1.425(3)	C(1)-C(2)	1.4509(14)	C(2)-C(3)	1.383(16)
C(2)-C(1)	1.346(2)	C(2)-C(3)#1	1.3492(15)	C(3)-C(4)	1.421(16)
C(2)-C(8)	1.4337(18)	C(4)-C(5)	1.4386(14)	C(4)-C(5)	1.411(11)
C(6)-C(5)	1.3955(19)	C(4)-C(6)	1.4394(14)	C(4)-C(7)	1.438(9)
C(6)-C(1)#1	1.4396(18)	C(5)-N(1)	1.1505(14)	C(5)-C(6)	1.408(11)
C(8)-C(3)	1.4011(19)	C(6)-N(2)	1.1509(13)	C(5)-C(10)	1.481(6)
C(3)-C(4)	1.384(2)	C(7)-C(8)	1.3738(16)	C(7)-C(8)	1.324(8)
C(4)-C(5)	1.3861(19)	C(7)-C(12)	1.4041(16)	C(8)-C(9)	1.455(10)
C(10)-C(9)	1.3417(18)	C(8)-C(9)	1.4230(15)	C(9)-C(10)	1.406(11)
C(10)-C(11)	1.4477(16)	C(9)-C(10)	1.4222(15)	C(9)-C(11)	1.425(13)
C(11)-C(12)	1.3747(17)	C(9)-C(13)	1.4274(14)	C(10)-C(14)	1.418(11)
C(11)-C(9)#2	1.4394(16)	C(10)-C(11)	1.4164(15)	C(11)-C(12)	1.380(15)
C(13)-N(1)	1.1498(16)	C(10)-C(14)	1.4569(15)	C(12)-C(13)	1.372(16)
C(13)-C(12)	1.4305(17)	C(11)-C(12)	1.3773(15)	C(13)-C(14)	1.392(16)
C(12)-C(14)	1.4340(17)	C(13)-	1.3625(15)	N(2X)-C(10X)	1.144(4)
		C(15)#2			
C(14)-N(2)	1.1509(16)	C(14)-	1.414(2)	N(4X)-C(9X)	1.144(4)
		C(14)#2			
		C(14)-C(15)	1.4301(15)	C(3X)-	1.347(4)
				C(7X)#1	
				C(3X)-C(5X)	1.446(4)
				C(5X)-C(8X)	1.375(3)
				C(5X)-C(7X)	1.447(4)
				C(7X)-	1.347(4)
				C(3X)#1	
				C(8X)-C(10X)	1.443(4)
				C(8X)-C(9X)	1.450(4)

Table S2. Bond lengths in [Å] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex (5), phenanthrene-TCNQ complex (6).

Compound/Parameter	(7)
C(8)-C(9)	1.3741(15)
C(8)-C(7)	1.4430(15)
C(8)-C(6)	1.4449(15)
C(6)-C(7)#1	1.3431(16)
C(11)-N(2)	1.1466(14)
C(11)-C(9)	1.4359(15)
C(3)-C(4)	1.4162(16)
C(3)-C(2)	1.4169(16)
C(3)-C(3)#2	1.423(2)
C(4)-C(5)	1.3616(17)
C(2)-C(1)	1.3642(17)
C(10)-N(1)	1.1499(15)
C(10)-C(9)	1.4322(15)
C(5)-C(1)#2	1.4115(17)

Table S3. Bond lengths in [Å] for naphthalene-TCNQ complex (7).

Compound/Parameter	(1)	(2)		(3)	
C(7)-C(6)-C(5)	122.1(2)	C(3)-C(4)-C(5)	118.3(3)	C(3)-C(1)-C(5)	121.9(4)
C(4)-C(3)-C(2)	121.6(2)	C(3)-C(4)-C(8)	121.9(3)	C(3)-C(1)-C(2)	119.1(4)
C(14)-C(13)-C(11)	121.06(18)	C(5)-C(4)-C(8)	119.8(3)	C(5)-C(1)-C(2)	119.1(4)
C(14)-C(13)-C(12)	121.35(18)	C(4)-C(3)-C(2)	121.9(3)	C(5)#1-C(2)-C(1)	119.9(4)
C(11)-C(13)-C(12)	117.58(18)	C(1)-C(6)-C(5)	120.2(3)	C(1)-C(3)-C(4)	122.1(4)
C(4)-C(10)-C(9)	119.59(18)	C(1)-C(6)-C(7)	120.2(3)	C(1)-C(3)-C(6)	121.2(4)
C(4)-C(10)-C(5)	121.20(18)	C(5)-C(6)-C(7)	119.6(3)	C(4)-C(3)-C(6)	116.7(4)
C(9)-C(10)-C(5)	119.21(18)	C(9)-C(8)-C(5)#1	118.6(3)	C(2)#1-C(5)-C(1)	121.0(4)
C(19)-C(21)-C(18)	121.8(2)	C(9)-C(8)-C(4)	122.4(3)	N(7)-C(4)-C(3)	177.9(4)
C(19)-C(21)-C(21)#1	119.6(3)	C(5)#1-C(8)-C(4)	119.0(3)	N(8)-C(6)-C(3)	178.3(5)
C(18)-C(21)-C(21)#1	118.6(3)	C(7)#1-C(10)-C(9)	120.7(3)	C(11)-C(9)-C(10)	120.4(4)
C(3)-C(4)-C(10)	118.38(19)	C(6)-C(5)-C(8)#1	119.4(3)	C(11)-C(9)-C(9)#2	119.8(5)
C(3)-C(4)-C(5)#2	122.27(19)	C(6)-C(5)-C(4)	119.4(3)	C(10)-C(9)-C(9)#2	119.8(4)
C(10)-C(4)-C(5)#2	119.35(17)	C(8)#1-C(5)-C(4)	121.2(3)	C(12)-C(10)-C(9)	118.6(4)
C(6)-C(5)-C(10)	118.23(19)	C(8)-C(9)-C(10)	121.5(3)	C(12)-C(10)-C(13)	122.7(4)
C(6)-C(5)-C(4)#2	122.33(18)	C(1)-C(2)-C(3)	120.4(3)	C(9)-C(10)-C(13)	118.6(4)
C(10)-C(5)-C(4)#2	119.44(17)	C(2)-C(1)-C(6)	119.7(3)	C(15)-C(11)-C(9)	118.6(4)
N(2)-C(16)-C(14)	178.5(2)	C(10)#1-C(7)-C(6)	120.2(3)	C(15)-C(11)-C(14)	122.7(4)
C(7)-C(8)-C(9)	120.6(2)	C(14)-C(13)-C(11)	121.7(3)	C(9)-C(11)-C(14)	118.7(4)
C(8)-C(7)-C(6)	120.2(2)	C(14)-C(13)-C(12)	120.4(3)	C(10)-C(12)-C(16)	120.6(4)
C(1)-C(2)-C(3)	120.7(2)	C(11)-C(13)-C(12)	117.9(3)	C(14)#2-C(13)-C(10)	121.4(4)
C(12)#3-C(11)-C(13)	121.47(19)	C(13)-C(14)-C(15)	121.8(3)	C(13)#2-C(14)-C(11)	121.6(4)
C(11)#3-C(12)-C(13)	120.94(19)	C(13)-C(14)-C(16)	122.6(3)	C(16)-C(15)-C(11)	120.9(4)
N(1)-C(15)-C(14)	177.8(2)	C(15)-C(14)-C(16)	115.6(3)	C(15)-C(16)-C(12)	121.0(4)
C(8)-C(9)-C(1)	120.7(2)	C(11)#2-C(12)-C(13)	120.7(3)	C(20)-C(17)-C(18)	120.4(4)
C(8)-C(9)-C(10)	119.7(2)	C(12)#2-C(11)-C(13)	121.4(3)	C(20)-C(17)-C(17)#3	120.5(5)
C(1)-C(9)-C(10)	119.6(2)	N(1)-C(15)-C(14)	179.3(4)	C(18)-C(17)-C(17)#3	119.1(5)
C(13)-C(14)-C(16)	121.72(19)	N(2)-C(16)-C(14)	178.1(3)	C(23)-C(18)-C(19)	123.2(4)
C(13)-C(14)-C(15)	120.91(19)	C(21)-C(20)-C(19)	120.3(3)	C(23)-C(18)-C(17)	117.8(4)
C(16)-C(14)-C(15)	117.37(18)	C(21)-C(20)-C(20)#3	120.1(4)	C(19)-C(18)-C(17)	119.0(4)
C(2)-C(1)-C(9)	120.1(2)	C(19)-C(20)-C(20)#3	119.6(4)	C(21)-C(19)-C(18)	122.4(4)
C(20)-C(19)-C(21)	120.5(3)	C(18)-C(19)-C(20)	119.1(3)	C(22)-C(20)-C(17)	119.2(4)
C(17)-C(18)-C(21)	120.0(2)	C(18)-C(19)-C(23)	121.7(3)	C(22)-C(20)-C(21)#3	122.2(4)
C(19)-C(20)-C(17)#1	120.5(3)	C(20)-C(19)-C(23)	119.2(3)	C(17)-C(20)-C(21)#3	118.6(4)
C(18)-C(17)-C(20)#1	120.8(3)	C(22)-C(21)-C(20)	119.0(3)	C(19)-C(21)-C(20)#3	120.4(4)
		C(22)-C(21)-C(24)	122.6(3)	C(20)-C(22)-C(24)	121.1(5)
		C(20)-C(21)-C(24)	118.4(3)	C(24)-C(23)-C(18)	121.7(4)
		C(17)-C(18)-C(19)	120.0(3)	C(23)-C(24)-C(22)	119.8(5)
		C(24)#3-C(23)-C(19)	121.1(3)		
		C(23)#3-C(24)-C(21)	121.5(3)		
		C(17)-C(22)-C(21)	120.8(3)		
		C(22)-C(17)-C(18)	120.8(3)		

Table S4. Bond angles [°] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-TCNQ complex (2), pyrene-TCNQ (2:1) complex (3).

Compound/Parameter	(4)	(5)		(6)	
C(8)-C(7)-C(6)	120.00(12)	C(4)-C(1)-C(3)	120.81(9)	C(2)-C(1)-C(6)	120.3(9)
C(8)-C(7)-C(7)#1	120.06(14)	C(4)-C(1)-C(2)	120.99(9)	C(1)-C(2)-C(3)	121.1(11)
C(6)-C(7)-C(7)#1	119.94(14)	C(3)-C(1)-C(2)	118.20(9)	C(2)-C(3)-C(4)	119.9(10)
C(1)-C(2)-C(8)	121.29(12)	C(3)#1-C(2)-C(1)	120.46(10)	C(5)-C(4)-C(3)	118.6(8)
C(5)-C(6)-C(7)	118.91(12)	C(2)#1-C(3)-C(1)	121.33(10)	C(5)-C(4)-C(7)	121.1(8)
C(5)-C(6)-C(1)#1	122.81(12)	C(1)-C(4)-C(5)	122.94(9)	C(3)-C(4)-C(7)	120.3(9)
C(7)-C(6)-C(1)#1	118.28(12)	C(1)-C(4)-C(6)	121.79(9)	C(6)-C(5)-C(4)	119.5(9)
C(3)-C(8)-C(7)	118.87(12)	C(5)-C(4)-C(6)	115.28(9)	C(6)-C(5)-C(10)	122.9(8)
C(3)-C(8)-C(2)	122.42(12)	N(1)-C(5)-C(4)	177.67(10)	C(4)-C(5)-C(10)	117.6(7)
C(7)-C(8)-C(2)	118.69(12)	N(2)-C(6)-C(4)	179.22(11)	C(1)-C(6)-C(5)	120.5(9)
C(2)-C(1)-C(6)#1	121.72(12)	C(8)-C(7)-C(12)	120.09(10)	C(8)-C(7)-C(4)	120.8(6)
C(4)-C(3)-C(8)	120.59(12)	C(7)-C(8)-C(9)	120.37(10)	C(7)-C(8)-C(9)	121.8(6)
C(3)-C(4)-C(5)	120.88(13)	C(10)-C(9)-C(8)	119.67(10)	C(10)-C(9)-C(11)	119.3(9)
C(4)-C(5)-C(6)	120.75(12)	C(10)-C(9)-C(13)	119.35(10)	C(10)-C(9)-C(8)	119.2(8)
C(9)-C(10)-C(11)	120.93(11)	C(8)-C(9)-C(13)	120.98(10)	C(11)-C(9)-C(8)	121.4(8)
C(12)-C(11)-C(9)#2	121.56(10)	C(11)-C(10)-C(9)	118.23(10)	C(9)-C(10)-C(14)	118.5(9)
C(12)-C(11)-C(10)	120.32(10)	C(11)-C(10)-C(14)	122.85(10)	C(9)-C(10)-C(5)	119.5(7)
C(9)#2-C(11)-C(10)	118.12(11)	C(9)-C(10)-C(14)	118.92(10)	C(14)-C(10)-C(5)	122.0(7)
N(1)-C(13)-C(12)	179.91(17)	C(12)-C(11)-C(10)	120.89(10)	C(12)-C(11)-C(9)	120.3(9)
C(10)-C(9)-C(11)#2	120.95(11)	C(11)-C(12)-C(7)	120.73(10)	C(13)-C(12)-C(11)	120.8(11)
C(11)-C(12)-C(13)	121.66(10)	C(15)#2-C(13)-C(9)	121.53(10)	C(12)-C(13)-C(14)	120.4(11)
C(11)-C(12)-C(14)	122.20(10)	C(14)#2-C(14)-C(15)	119.28(12)	C(13)-C(14)-C(10)	120.7(9)
C(13)-C(12)-C(14)	116.12(11)	C(14)#2-C(14)-C(10)	119.81(12)	C(7X)#1-C(3X)-C(5X)	121.1(3)
N(2)-C(14)-C(12)	178.70(12)	C(15)-C(14)-C(10)	120.91(9)	C(8X)-C(5X)-C(3X)	120.8(3)
		C(13)#2-C(15)-C(14)	121.11(10)	C(8X)-C(5X)-C(7X)	120.8(3)
				C(3X)-C(5X)-C(7X)	118.4(2)
				C(3X)#1-C(7X)-C(5X)	120.4(3)
				C(5X)-C(8X)-C(10X)	121.7(3)
				C(5X)-C(8X)-C(9X)	123.4(3)
				C(10X)-C(8X)-C(9X)	114.9(3)
				N(4X)-C(9X)-C(8X)	178.8(3)
				N(2X)-C(10X)-C(8X)	179.6(3)

Table S5. Bond angles [°] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex (5), phenanthrene-TCNQ complex (6).

Compound/Parameter	(7)
C(9)-C(8)-C(7)	121.09(10)
C(9)-C(8)-C(6)	120.72(10)
C(7)-C(8)-C(6)	118.19(10)
C(6)#1-C(7)-C(8)	121.05(10)
N(2)-C(11)-C(9)	178.72(11)
C(7)#1-C(6)-C(8)	120.76(10)
C(4)-C(3)-C(2)	122.14(10)
C(4)-C(3)-C(3)#2	118.80(13)
C(2)-C(3)-C(3)#2	119.06(13)
C(5)-C(4)-C(3)	120.78(11)
C(1)-C(2)-C(3)	120.45(11)
N(1)-C(10)-C(9)	178.53(12)
C(8)-C(9)-C(10)	122.02(10)
C(8)-C(9)-C(11)	122.64(9)
C(10)-C(9)-C(11)	115.31(9)
C(4)-C(5)-C(1)#2	120.38(11)
C(2)-C(1)-C(5)#2	120.53(11)

Table S6. Bond lengths $[^{\circ}]$ for naphthalene-TCNQ complex (7).

Compound/Parameter	(1)	(2)		(3)	
C(2)-C(3)-C(4)-C(10)	-1.3(3)	C(5)-C(4)-C(3)-C(2)	-1.9(5)	C(3)-C(1)-C(2)-C(5)#1	179.7(3)
C(2)-C(3)-C(4)-C(5)#2	178.95(2)	C(8)-C(4)-C(3)-C(2)	179.0(3)	C(5)-C(1)-C(2)-C(5)#1	0.6(6)
C(9)-C(10)-C(4)-C(3)	1.1(3)	C(3)-C(4)-C(8)-C(9)	-1.6(5)	C(5)-C(1)-C(3)-C(4)	-178.8(3)
C(5)-C(10)-C(4)-C(3)	-178.58(2)	C(5)-C(4)-C(8)-C(9)	179.2(3)	C(2)-C(1)-C(3)-C(4)	2.1(5)
C(9)-C(10)-C(4)-C(5)#2	-179.23(2)	C(3)-C(4)-C(8)-C(5)#1	178.4(3)	C(5)-C(1)-C(3)-C(6)	1.4(6)
C(5)-C(10)-C(4)-C(5)#2	1.1(3)	C(5)-C(4)-C(8)-C(5)#1	-0.8(5)	C(2)-C(1)-C(3)-C(6)	-177.7(4)
C(7)-C(6)-C(5)-C(10)	1.6(3)	C(1)-C(6)-C(5)-C(8)#1	179.8(3)	C(3)-C(1)-C(5)-C(2)#1	-179.7(4)
C(7)-C(6)-C(5)-C(4)#2	-178.94(2)	C(7)-C(6)-C(5)-C(8)#1	0.0(4)	C(11)-C(9)-C(10)-C(12)	0.3(5)
C(4)-C(10)-C(5)-C(6)	178.32(2)	C(1)-C(6)-C(5)-C(4)	0.2(4)	C(11)-C(9)-C(10)-C(13)	179.7(3)
C(9)-C(10)-C(5)-C(6)	-1.3(3)	C(7)-C(6)-C(5)-C(4)	-179.7(3)	C(10)-C(9)-C(11)-C(15)	-0.8(5)
C(4)-C(10)-C(5)-C(4)#2	-1.1(3)	C(3)-C(4)-C(5)-C(6)	1.2(4)	C(10)-C(9)-C(11)-C(14)	179.7(3)
C(9)-C(10)-C(5)-C(4)#2	179.22(2)	C(8)-C(4)-C(5)-C(6)	-179.6(2)	C(9)-C(10)-C(12)-C(16)	0.3(6)
C(9)-C(8)-C(7)-C(6)	-0.7(3)	C(3)-C(4)-C(5)-C(8)#1	-178.4(3)	C(13)-C(10)-C(12)-C(16)	-179.1(4)
C(5)-C(6)-C(7)-C(8)	-0.6(3)	C(8)-C(4)-C(5)-C(8)#1	0.8(5)	C(9)-C(11)-C(15)-C(16)	0.7(6)
C(4)-C(3)-C(2)-C(1)	0.0(3)	C(5)#1-C(8)-C(9)-C(10)	-0.4(5)	C(14)-C(11)-C(15)-C(16)	-179.7(4)
C(14)-C(13)-C(11)-C(12)#3	179.97(2)	C(4)-C(8)-C(9)-C(10)	179.6(3)	C(11)-C(15)-C(16)-C(12)	-0.2(6)
C(12)-C(13)-C(11)-C(12)#3	0.4(3)	C(4)-C(3)-C(2)-C(1)	1.1(5)	C(10)-C(12)-C(16)-C(15)	-0.3(6)
C(14)-C(13)-C(12)-C(11)#3	-179.96(2)	C(3)-C(2)-C(1)-C(6)	0.3(5)	C(20)-C(17)-C(18)-C(23)	-1.3(6)
C(11)-C(13)-C(12)-C(11)#3	-0.4(3)	C(5)-C(6)-C(1)-C(2)	-1.0(5)	C(20)-C(17)-C(18)-C(19)	-180.0(3)
C(7)-C(8)-C(9)-C(1)	-179.10(2)	C(7)-C(6)-C(1)-C(2)	178.9(3)	C(23)-C(18)-C(19)-C(21)	-179.0(4)
C(7)-C(8)-C(9)-C(10)	1.0(3)	C(1)-C(6)-C(7)-C(10)#1	-179.3(3)	C(18)-C(17)-C(20)-C(22)	0.6(6)
C(4)-C(10)-C(9)-C(8)	-179.57(2)	C(5)-C(6)-C(7)-C(10)#1	0.5(5)	C(17)-C(20)-C(22)-C(24)	0.1(6)
C(5)-C(10)-C(9)-C(8)	0.1(3)	C(11)-C(13)-C(14)-C(15)	-0.6(5)	C(19)-C(18)-C(23)-C(24)	179.8(4)
C(4)-C(10)-C(9)-C(1)	0.5(3)	C(12)-C(13)-C(14)-C(15)	178.9(3)	C(17)-C(18)-C(23)-C(24)	1.2(6)
C(5)-C(10)-C(9)-C(1)	-179.87(2)	C(11)-C(13)-C(14)-C(16)	179.1(3)	C(18)-C(23)-C(24)-C(22)	-0.5(7)
C(11)-C(13)-C(14)-C(16)	-179.60(2)	C(12)-C(13)-C(14)-C(16)	-1.4(5)	C(20)-C(22)-C(24)-C(23)	-0.2(7)
N(2)-C(16)-C(14)-C(13)	17(9)	C(13)-C(14)-C(15)-N(1)	-177(1)	C(1)-C(3)-C(4)-N(7)	34(1)
N(2)-C(16)-C(14)-C(15)	-163(9)	C(16)-C(14)-C(15)-N(1)	3(31)	C(6)-C(3)-C(4)-N(7)	-146(1)
N(1)-C(15)-C(14)-C(13)	3(6)	C(13)-C(14)-C(16)-N(2)	-49(1)	C(1)-C(3)-C(6)-N(8)	35(2)
N(1)-C(15)-C(14)-C(16)	-177(1)	C(15)-C(14)-C(16)-N(2)	131(1)	C(4)-C(3)-C(6)-N(8)	-144(2)
C(3)-C(2)-C(1)-C(9)	1.6(3)	C(21)-C(20)-C(19)-C(18)	0.8(5)		
C(8)-C(9)-C(1)-C(2)	178.24(2)	C(21)-C(20)-C(19)-C(23)	-179.1(3)		
$C(10)-\overline{C(9)-C(1)-C(2)}$	-1.8(3)	C(20)-C(19)-C(18)-C(17)	-1.1(5)		
		C(23)-C(19)-C(18)-C(17)	178.8(3)		
		C(24)-C(21)-C(22)-C(17)	178.7(3)		

Table S7. Torsion angles [°] for naphthalene-perylene-TCNQ complex (1), pyrene-perylene-TCNQ complex (2), pyrene-TCNQ (2:1) complex (3).

Compound/Parameter	(4)	(5)		(6)	
C(8)-C(7)-C(6)-C(5)	-0.08(2)	C(4)-C(1)-C(2)-C(3)#1	179.75(9)	C(6)-C(1)-C(2)-C(3)	-0.4(5)
C(7)#1-C(7)-C(6)-C(5)	179.77(1)	C(3)-C(1)-C(2)-C(3)#1	-0.23(2)	C(1)-C(2)-C(3)-C(4)	-0.1(4)
C(8)-C(7)-C(6)-C(1)#1	179.15(1)	C(3)-C(1)-C(4)-C(5)	179.58(8)	C(2)-C(3)-C(4)-C(5)	0.0(9)
C(7)#1-C(7)-C(6)-C(1)#1	-1.01(2)	C(2)-C(1)-C(4)-C(5)	-0.40(2)	C(2)-C(3)-C(4)-C(7)	179.5(5)
C(6)-C(7)-C(8)-C(3)	0.58(2)	C(3)-C(1)-C(4)-C(6)	-1.16(2)	C(3)-C(4)-C(5)-C(6)	0.5(12)
C(7)#1-C(7)-C(8)-C(3)	-179.27(1)	C(2)-C(1)-C(4)-C(6)	178.86(8)	C(7)-C(4)-C(5)-C(6)	-178.9(7)
C(6)-C(7)-C(8)-C(2)	179.17(1)	C(12)-C(7)-C(8)-C(9)	0.81(2)	C(3)-C(4)-C(5)-C(10)	179.8(5)
C(7)#1-C(7)-C(8)-C(2)	-0.67(2)	C(7)-C(8)-C(9)-C(10)	-0.80(2)	C(7)-C(4)-C(5)-C(10)	0.4(9)
C(1)-C(2)-C(8)-C(3)	179.18(1)	C(7)-C(8)-C(9)-C(13)	179.01(9)	C(2)-C(1)-C(6)-C(5)	0.9(10)
C(1)-C(2)-C(8)-C(7)	0.63(2)	C(8)-C(9)-C(10)-C(11)	-0.01(1)	C(4)-C(5)-C(6)-C(1)	-1.0(13)
C(8)-C(2)-C(1)-C(6)#1	0.25(2)	C(13)-C(9)-C(10)-C(11)	-179.82(8)	C(10)-C(5)-C(6)-C(1)	179.8(5)
C(7)-C(8)-C(3)-C(4)	-0.60(2)	C(8)-C(9)-C(10)-C(14)	-179.85(8)	C(5)-C(4)-C(7)-C(8)	-0.3(10)
C(2)-C(8)-C(3)-C(4)	-179.15(1)	C(13)-C(9)-C(10)-C(14)	0.34(1)	C(3)-C(4)-C(7)-C(8)	-179.8(5)
C(8)-C(3)-C(4)-C(5)	0.13(2)	C(9)-C(10)-C(11)-C(12)	0.81(2)	C(4)-C(7)-C(8)-C(9)	-0.4(8)
C(3)-C(4)-C(5)-C(6)	0.39(2)	C(14)-C(10)-C(11)-C(12)	-179.36(9)	C(7)-C(8)-C(9)-C(10)	1.1(10)
C(7)-C(6)-C(5)-C(4)	-0.41(2)	C(10)-C(11)-C(12)-C(7)	-0.82(2)	C(7)-C(8)-C(9)-C(11)	-179.5(6)
C(1)#1-C(6)-C(5)-C(4)	-179.60(1)	C(8)-C(7)-C(12)-C(11)	-0.01(2)	C(11)-C(9)-C(10)-C(14)	0.2(12)
C(9)-C(10)-C(11)-C(12)	179.26(1)	C(10)-C(9)-C(13)-C(15)#2	0.62(2)	C(8)-C(9)-C(10)-C(14)	179.6(7)
C(9)-C(10)-C(11)-C(9)#2	-0.24(2)	C(8)-C(9)-C(13)-C(15)#2	-179.20(9)	C(11)-C(9)-C(10)-C(5)	179.6(6)
C(11)-C(10)-C(9)-C(11)#2	0.25(2)	C(11)-C(10)-C(14)-C(14)#2	179.39(1)	C(8)-C(9)-C(10)-C(5)	-1.0(10)
C(9)#2-C(11)-C(12)-C(13)	-179.46(1)	C(9)-C(10)-C(14)-C(14)#2	-0.77(2)	C(6)-C(5)-C(10)-C(9)	179.6(1)
C(10)-C(11)-C(12)-C(13)	1.06(2)	C(11)-C(10)-C(14)-C(15)	-0.32(2)	C(10)-C(9)-C(11)-C(12)	1.0(1)
C(9)#2-C(11)-C(12)-C(14)	2.21(2)	C(9)-C(10)-C(14)-C(15)	179.52(8)	C(11)-C(12)-C(13)-C(14)	-0.2(9)
C(10)-C(11)-C(12)-C(14)	-177.27(1)	C(14)#2-C(14)-C(15)-C(13)#2	-0.67(2)	C(5)-C(10)-C(14)-C(13)	179.2(5)
N(1)-C(13)-C(12)-C(11)	-150(1)	C(1)-C(4)-C(5)-N(1)	-177(1)	C(5X)-C(8X)-C(9X)-N(4X)	-134(2)
N(1)-C(13)-C(12)-C(14)	29(1)	C(6)-C(4)-C(5)-N(1)	3(3)	C(10X)-C(8X)-C(9X)-N(4X)	46(2)
C(11)-C(12)-C(14)-N(2)	98(6)	C(1)-C(4)-C(6)-N(2)	-130(8)	C(5X)-C(8X)-C(10X)-N(2X)	-82(6)
$C(13)-\overline{C(12)-C(14)-N(2)}$	-80(6)	C(5)-C(4)-C(6)-N(2)	50(8)	C(9X)-C(8X)-C(10X)-N(2X)	99(6)

Table S8. Torsion angles [°] for pyrene-TCNQ (1:1) complex (4), chrysene-TCNQ complex (5), phenanthrene-TCNQ complex (6).

Compound/Parameter	(7)
C(9)-C(8)-C(7)-C(6)#1	-178.21(10)
C(6)-C(8)-C(7)-C(6)#1	0.81(16)
C(9)-C(8)-C(6)-C(7)#1	178.21(9)
C(7)-C(8)-C(6)-C(7)#1	-0.81(16)
C(2)-C(3)-C(4)-C(5)	-179.68(10)
C(3)#2-C(3)-C(4)-C(5)	0.21(19)
C(4)-C(3)-C(2)-C(1)	-179.97(10)
C(3)#2-C(3)-C(2)-C(1)	0.14(18)
C(7)-C(8)-C(9)-C(10)	176.41(9)
C(6)-C(8)-C(9)-C(10)	-2.58(16)
C(7)-C(8)-C(9)-C(11)	-1.44(16)
C(6)-C(8)-C(9)-C(11)	179.57(9)
C(3)-C(4)-C(5)-C(1)#2	-0.49(17)
C(3)-C(2)-C(1)-C(5)#2	0.13(17)
N(1)-C(10)-C(9)-C(8)	-102(4)
N(1)-C(10)-C(9)-C(11)	76(4)
N(2)-C(11)-C(9)-C(8)	162(5)
N(2)-C(11)-C(9)-C(10)	-16(5)

Table S9. Torsion angles [°] for naphthalene-TCNQ complex (7).