# **Supplementary materials**

### New Ce (III) Sulfate-Tartrate-Based MOFs: An Insight into

#### **Controllable Self-Assembly of Acentric Metal-Organic Complexes**

Jin-Li Qi, Yue-Qing Zheng,\* Wei Xu, Hong-Lin Zhu, Jian-Li Lin, Hai-Sheng

#### Chang

Crystal Engineering Division Center for Applied Solid State Chemistry Research Ningbo University, Ningbo, 315211 P.R. China \* Corresponding author. Phone: Int. +574/87600747; Fax: Int. +574/87600792 E-mail address: *zhengcm@nbu.edu.cn* 

| Ce–O1                                 | 2.492(3) | Ce-O4 <sup>#2</sup>                   | 2.659(4) | Ce–O7                                 | 2.563(4) |
|---------------------------------------|----------|---------------------------------------|----------|---------------------------------------|----------|
| Ce–O2 <sup>#1</sup>                   | 2.475(3) | Ce–O5 <sup>#3</sup>                   | 2.514(4) | Ce–O8                                 | 2.594(4) |
| Ce–O3                                 | 2.535(4) | Ce–O6 <sup>#2</sup>                   | 2.473(4) | Ce–O9                                 | 2.535(4) |
|                                       |          |                                       |          |                                       |          |
| O1-Ce-O2 <sup>#1</sup>                | 129.0(1) | O2 <sup>#1</sup> –Ce–O7               | 126.7(1) | O4 <sup>#2</sup> -Ce-O8               | 133.1(1) |
| O1–Ce–O3                              | 61.1(1)  | O2 <sup>#1</sup> –Ce–O8               | 73.2(1)  | O4 <sup>#2</sup> –Ce–O9               | 65.9(1)  |
| O1-Ce-O4 <sup>#2</sup>                | 120.3(1) | O2 <sup>#1</sup> -Ce-O9               | 82.1(1)  | O5 <sup>#3</sup> -Ce-O6 <sup>#2</sup> | 93.1(1)  |
| O1–Ce–O5 <sup>#3</sup>                | 70.2(1)  | O3–Ce–O4 <sup>#2</sup>                | 127.1(1) | O5 <sup>#3</sup> –Ce–O7               | 72.0(1)  |
| O1–Ce–O6 <sup>#2</sup>                | 72.8(1)  | O3–Ce–O5 <sup>#3</sup>                | 131.3(1) | O5 <sup>#3</sup> –Ce–O8               | 123.5(1) |
| O1–Ce–O7                              | 76.2(1)  | O3–Ce–O6 <sup>#2</sup>                | 72.3(1)  | O5 <sup>#3</sup> –Ce–O9               | 82.7(1)  |
| O1–Ce–O8                              | 106.6(1) | O3–Ce–O7                              | 96.5(1)  | O6 <sup>#2</sup> –Ce–O7               | 148.7(1) |
| O1CeO9                                | 148.5(1) | O3–Ce–O8                              | 74.3(1)  | O6 <sup>#2</sup> –Ce–O8               | 141.5(2) |
| O2 <sup>#1</sup> -Ce-O3               | 70.6(1)  | O3–Ce–O9                              | 143.5(2) | O6 <sup>#2</sup> –Ce–O9               | 126.0(1) |
| O2 <sup>#1</sup> -Ce-O4 <sup>#2</sup> | 76.8(1)  | O4 <sup>#2</sup> -Ce-O5 <sup>#3</sup> | 76.7(1)  | O7–Ce–O8                              | 53.7(1)  |
| O2 <sup>#1</sup> -Ce-O5 <sup>#3</sup> | 153.1(1) | O4 <sup>#2</sup> -Ce-O6 <sup>#2</sup> | 60.8(1)  | O7–Ce–O9                              | 80.5(1)  |
| O2 <sup>#1</sup> -Ce-O6 <sup>#2</sup> | 78.1(1)  | O4 <sup>#2</sup> -Ce-O7               | 136.4(1) | O8–Ce–O9                              | 74.9(2)  |
|                                       |          |                                       |          |                                       |          |

**Table S1.** Selected Interatomic Distances (Å) and Bond Angles (deg) for  $\mathbf{1}^{a}$ 

| D−H···A                       | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | $\angle$ (D–H···A) |
|-------------------------------|--------|-----------------|-----------------|--------------------|
| O3–H3A…O12A                   | 0.86   | 1.81            | 2.560           | 144                |
| O3–H3A…O12B                   | 0.86   | 1.84            | 2.690           | 171                |
| O4–H4A…O6 <sup>#2</sup>       | 0.85   | 1.77            | 2.617           | 173                |
| O9–H91…O11                    | 0.81   | 2.18            | 2.833           | 139                |
| O9–H92····O1 <sup>#1</sup>    | 0.83   | 1.98            | 2.808           | 173                |
| O10–H10…O8                    | 0.84   | 1.97            | 2.801           | 170                |
| O11-H11O7 <sup>#4</sup>       | 0.85   | 2.28            | 3.067           | 153                |
| O12A–H121…O9 <sup>#5</sup>    | 0.82   | 2.14            | 2.760           | 132                |
| O12A-H122O10                  | 0.82   | 2.31            | 3.005           | 143                |
| O12A-H122…O11 <sup>#5</sup>   | 0.82   | 2.34            | 2.990           | 137                |
| O12B-H123····O7 <sup>#5</sup> | 0.79   | 2.15            | 2.904           | 160                |
| O12B-H124O9 <sup>#5</sup>     | 0.76   | 2.59            | 3.354           | 176                |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = x, y, z+1; #2 = -x+3/2, y+1/2, -z; #3 = x, y+1, z; #4 = -x+1, y, -z; #5 = x, y-1, z.

| Ce–O1                                 | 2.483(4) | CeO4 <sup>#2</sup>                    | 2.653(4) | Ce–O7                                 | 2.564(5) |
|---------------------------------------|----------|---------------------------------------|----------|---------------------------------------|----------|
| Ce–O2 <sup>#1</sup>                   | 2.475(4) | Ce–O5 <sup>#3</sup>                   | 2.513(5) | Ce–O8                                 | 2.600(5) |
| Ce–O3                                 | 2.539(5) | Ce–O6 <sup>#2</sup>                   | 2.474(5) | Ce–O9                                 | 2.555(5) |
|                                       |          |                                       |          |                                       |          |
| O1-Ce-O2 <sup>#1</sup>                | 128.8(1) | O2 <sup>#1</sup> -Ce-O7               | 126.7(2) | O4 <sup>#2</sup> -Ce-O8               | 132.9(1) |
| O1–Ce–O3                              | 61.5(1)  | O2 <sup>#1</sup> CeO8                 | 73.2(2)  | O4 <sup>#2</sup> -Ce-O9               | 66.0(2)  |
| O1-Ce-O4 <sup>#2</sup>                | 120.3(2) | O2 <sup>#1</sup> -Ce-O9               | 81.8(1)  | O5 <sup>#3</sup> -Ce-O6 <sup>#2</sup> | 93.4(2)  |
| O1–Ce–O5 <sup>#3</sup>                | 70.2(2)  | O3–Ce–O4 <sup>#2</sup>                | 127.2(1) | O5 <sup>#3</sup> –Ce–O7               | 72.0(2)  |
| O1–Ce–O6 <sup>#2</sup>                | 72.7(2)  | O3–Ce–O5 <sup>#3</sup>                | 130.7(2) | O5 <sup>#3</sup> –Ce–O8               | 123.5(2) |
| O1–Ce–O7                              | 76.5(2)  | O3–Ce–O6 <sup>#2</sup>                | 72.0(2)  | O5 <sup>#3</sup> –Ce–O9               | 83.2(2)  |
| O1–Ce–O8                              | 106.8(2) | O3–Ce–O7                              | 96.5(2)  | O6 <sup>#2</sup> –Ce–O7               | 148.9(2) |
| O1CeO9                                | 149.0(2) | O3–Ce–O8                              | 74.7(2)  | O6 <sup>#2</sup> –Ce–O8               | 141.3(2) |
| O2 <sup>#1</sup> CeO3                 | 71.0(1)  | O3–Ce–O9                              | 143.5(2) | O6 <sup>#2</sup> –Ce–O9               | 126.0(2) |
| O2 <sup>#1</sup> -Ce-O4 <sup>#2</sup> | 76.7(1)  | O4 <sup>#2</sup> -Ce-O5 <sup>#3</sup> | 76.9(1)  | O7–Ce–O8                              | 53.7(2)  |
| O2 <sup>#1</sup> -Ce-O5 <sup>#3</sup> | 153.2(1) | O4 <sup>#2</sup> -Ce-O6 <sup>#2</sup> | 60.9(1)  | O7–Ce–O9                              | 80.4(2)  |
| O2 <sup>#1</sup> -Ce-O6 <sup>#2</sup> | 77.9(2)  | O4 <sup>#2</sup> -Ce-O7               | 136.3(2) | O8–Ce–O9                              | 74.5(2)  |
|                                       |          |                                       |          |                                       |          |

**Table S2.** Selected Interatomic Distances (Å) and Bond Angles (deg) for  $2^{a}$ 

| D–H···A                     | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | $\angle (D-H\cdots A)$ |
|-----------------------------|--------|-----------------|-----------------|------------------------|
| O3–H3A…O12A                 | 0.86   | 1.83            | 2.579           | 144                    |
| O3–H3A…O12B                 | 0.86   | 1.84            | 2.695           | 170                    |
| O4−H4A…O6 <sup>#2</sup>     | 0.85   | 1.77            | 2.618           | 173                    |
| O9–H91…O11                  | 0.82   | 2.14            | 2.795           | 137                    |
| O9–H92…O1 <sup>#1</sup>     | 0.82   | 2.00            | 2.818           | 173                    |
| O10-H10···O8                | 0.83   | 1.99            | 2.809           | 170                    |
| O11–H11…O7 <sup>#4</sup>    | 0.82   | 2.26            | 3.031           | 158                    |
| O12A–H121…O9 <sup>#5</sup>  | 0.83   | 2.13            | 2.756           | 132                    |
| O12A-H122…O10               | 0.82   | 2.30            | 2.996           | 143                    |
| O12A-H122…O11 <sup>#5</sup> | 0.82   | 2.37            | 3.014           | 137                    |
| O12B-H123…O7 <sup>#5</sup>  | 0.79   | 2.11            | 2.874           | 161                    |
| O12B-H124O9 <sup>#5</sup>   | 0.76   | 2.56            | 3.320           | 175                    |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = x, y, z-1; #2 = -x+1/2, y-1/2, -z+2; #3 = x, y-1, z; #4 = -x+1, y, -z+2; #5 = x, y+1, z.

| Ce–O1                                 | 2.468(4) | Ce-O4 <sup>#2</sup>                   | 2.643(4) | Ce–O7                                 | 2.623(5) |
|---------------------------------------|----------|---------------------------------------|----------|---------------------------------------|----------|
| Ce–O2 <sup>#1</sup>                   | 2.472(4) | Ce–O5 <sup>#3</sup>                   | 2.525(4) | Ce–O8                                 | 2.569(4) |
| Ce–O3                                 | 2.527(4) | Ce–O6 <sup>#2</sup>                   | 2.479(4) | Ce–O9                                 | 2.567(5) |
|                                       |          |                                       |          |                                       |          |
| O1-Ce-O2 <sup>#1</sup>                | 129.2(1) | O2 <sup>#1</sup> –Ce–O7               | 124.7(1) | O4 <sup>#2</sup> -Ce-O8               | 130.7(1) |
| O1–Ce–O3                              | 61.0(1)  | O2 <sup>#1</sup> -Ce-O8               | 71.1(1)  | O4 <sup>#2</sup> -Ce-O9               | 65.3(1)  |
| O1-Ce-O4 <sup>#2</sup>                | 120.7(1) | O2 <sup>#1</sup> -Ce-O9               | 83.7(1)  | O5 <sup>#3</sup> -Ce-O6 <sup>#2</sup> | 92.9(1)  |
| O1–Ce–O5 <sup>#3</sup>                | 69.7(1)  | O3–Ce–O4 <sup>#2</sup>                | 127.4(1) | O5 <sup>#3</sup> –Ce–O7               | 75.5(1)  |
| O1–Ce–O6 <sup>#2</sup>                | 73.4(1)  | O3–Ce–O5 <sup>#3</sup>                | 130.7(2) | O5 <sup>#3</sup> –Ce–O8               | 127.0(1) |
| O1-Ce-O7                              | 77.4(2)  | O3–Ce–O6 <sup>#2</sup>                | 72.7(1)  | O5 <sup>#3</sup> –Ce–O9               | 81.5(2)  |
| O1–Ce–O8                              | 108.5(2) | O3–Ce–O7                              | 94.3(2)  | O6 <sup>#2</sup> –Ce–O7               | 150.7(1) |
| O1-Ce-O9                              | 146.9(1) | O3–Ce–O8                              | 73.2(1)  | O6 <sup>#2</sup> –Ce–O8               | 138.9(2) |
| O2 <sup>#1</sup> -Ce-O3               | 71.4(1)  | O3–Ce–O9                              | 145.1(1) | O6 <sup>#2</sup> –Ce–O9               | 125.6(1) |
| O2 <sup>#1</sup> -Ce-O4 <sup>#2</sup> | 75.3(1)  | O4 <sup>#2</sup> -Ce-O5 <sup>#3</sup> | 77.0(1)  | O7–Ce–O8                              | 53.8(1)  |
| O2 <sup>#1</sup> -Ce-O5 <sup>#3</sup> | 152.1(1) | O4 <sup>#2</sup> -Ce-O6 <sup>#2</sup> | 60.7(1)  | O7–Ce–O9                              | 79.9(2)  |
| O2 <sup>#1</sup> -Ce-O6 <sup>#2</sup> | 76.8(1)  | O4 <sup>#2</sup> -Ce-O7               | 138.3(2) | O8–Ce–O9                              | 75.9(2)  |
|                                       |          |                                       |          |                                       |          |

**Table S3.** Selected Interatomic Distances (Å) and Bond Angles (deg) for  $3^{a}$ 

| D–H···A                     | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | $\angle (D-H\cdots A)$ |
|-----------------------------|--------|-----------------|-----------------|------------------------|
| O3–H3A…O11A                 | 0.82   | 1.94            | 2.612           | 139                    |
| O3–H3A…O11B                 | 0.82   | 1.87            | 2.615           | 151                    |
| O4−H4A…O6 <sup>#2</sup>     | 0.82   | 1.80            | 2.615           | 173                    |
| O9–H91…O10A                 | 0.82   | 2.15            | 2.745           | 130                    |
| O9–H92…O1 <sup>#1</sup>     | 0.78   | 2.16            | 2.840           | 146                    |
| O10A–H101…O7 <sup>#1</sup>  | 0.86   | 1.91            | 2.714           | 157                    |
| O10A–H102…O8 <sup>#4</sup>  | 0.82   | 1.90            | 2.713           | 176                    |
| O10B–H103…O7 <sup>#1</sup>  | 0.85   | 2.16            | 3.013           | 179                    |
| O10B–H104…O8 <sup>#4</sup>  | 0.85   | 2.29            | 3.142           | 179                    |
| O11A–H111…O7 <sup>#5</sup>  | 0.83   | 2.16            | 2.989           | 179                    |
| O11A-H112O10A <sup>#6</sup> | 0.84   | 2.64            | 3.452           | 164                    |
| O11A–H113…O9 <sup>#5</sup>  | 0.80   | 2.05            | 2.817           | 160                    |
| O11A-H114O10B <sup>#4</sup> | 0.81   | 2.15            | 2.944           | 165                    |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = x, y, z-1; #2 = x-1/2, -y+1/2, -z+1; #3 = x-1, y, z; #4 = -x+1, -y+1, z; #5 = x+1, y, z; #6 = -x+1, -y+1, z+1.

| Ce–O1                                 | 2.472(3) | Ce-O4 <sup>#2</sup>                   | 2.643(3) | Ce–O7                                 | 2.627(3) |
|---------------------------------------|----------|---------------------------------------|----------|---------------------------------------|----------|
| Ce–O2 <sup>#1</sup>                   | 2.472(3) | Ce–O5 <sup>#3</sup>                   | 2.527(3) | Ce–O8                                 | 2.572(3) |
| Ce–O3                                 | 2.527(3) | Ce-O6 <sup>#2</sup>                   | 2.478(3) | Ce–O9                                 | 2.567(3) |
|                                       |          |                                       |          |                                       |          |
| O1-Ce-O2 <sup>#1</sup>                | 129.4(1) | O2 <sup>#1</sup> -Ce-O7               | 124.5(1) | O4 <sup>#2</sup> -Ce-O8               | 131.0(1) |
| O1–Ce–O3                              | 61.2(1)  | O2 <sup>#1</sup> -Ce-O8               | 71.2(1)  | O4 <sup>#2</sup> -Ce-O9               | 65.4(1)  |
| O1-Ce-O4 <sup>#2</sup>                | 120.8(1) | O2 <sup>#1</sup> -Ce-O9               | 83.6(1)  | O5 <sup>#3</sup> –Ce–O6 <sup>#2</sup> | 93.2(1)  |
| O1–Ce–O5 <sup>#3</sup>                | 69.8(1)  | O3–Ce–O4 <sup>#2</sup>                | 127.3(1) | O5 <sup>#3</sup> –Ce–O7               | 75.6(1)  |
| O1-Ce-O6 <sup>#2</sup>                | 73.6(1)  | O3–Ce–O5 <sup>#3</sup>                | 131.0(1) | O5 <sup>#3</sup> –Ce–O8               | 126.9(1) |
| O1–Ce–O7                              | 77.4(1)  | O3–Ce–O6 <sup>#2</sup>                | 72.5(1)  | O5 <sup>#3</sup> –Ce–O9               | 81.4(1)  |
| O1–Ce–O8                              | 108.1(1) | O3–Ce–O7                              | 94.5(1)  | O6 <sup>#2</sup> –Ce–O7               | 150.9(1) |
| O1-Ce-O9                              | 146.7(1) | O3–Ce–O8                              | 73.0(1)  | O6 <sup>#2</sup> –Ce–O8               | 138.6(1) |
| O2 <sup>#1</sup> -Ce-O3               | 71.3(1)  | O3–Ce–O9                              | 144.9(1) | O6 <sup>#2</sup> –Ce–O9               | 125.8(1) |
| O2 <sup>#1</sup> -Ce-O4 <sup>#2</sup> | 75.4(1)  | O4 <sup>#2</sup> -Ce-O5 <sup>#3</sup> | 76.9(1)  | O7–Ce–O8                              | 53.6(1)  |
| O2 <sup>#1</sup> -Ce-O5 <sup>#3</sup> | 152.0(1) | O4 <sup>#2</sup> -Ce-O6 <sup>#2</sup> | 60.8(1)  | O7–Ce–O9                              | 79.7(1)  |
| O2 <sup>#1</sup> -Ce-O6 <sup>#2</sup> | 76.7(1)  | O4 <sup>#2</sup> -Ce-O7               | 138.1(1) | O8–Ce–O9                              | 76.0(1)  |
|                                       |          |                                       |          |                                       |          |

**Table S4.** Selected Interatomic Distances (Å) and Bond Angles (deg) for  $4^{a}$ 

| D–H···A                     | d(D–H) | $d(H \cdots A)$ | $d(D \cdots A)$ | $\angle (D-H\cdots A)$ |
|-----------------------------|--------|-----------------|-----------------|------------------------|
| O3–H3A…O11A                 | 0.82   | 1.96            | 2.630           | 139                    |
| O3–H3A…O11B                 | 0.82   | 1.86            | 2.608           | 151                    |
| O4–H4A····O6 <sup>#2</sup>  | 0.82   | 1.79            | 2.607           | 174                    |
| O9–H91…O10A                 | 0.82   | 2.17            | 2.770           | 130                    |
| O9–H92…O1 <sup>#1</sup>     | 0.81   | 2.14            | 2.835           | 145                    |
| O10A–H101…O7 <sup>#1</sup>  | 0.82   | 1.93            | 2.711           | 159                    |
| O10A–H102…O8 <sup>#4</sup>  | 0.82   | 1.90            | 2.721           | 174                    |
| O10B–H103…O7 <sup>#1</sup>  | 0.85   | 2.18            | 3.029           | 175                    |
| O10B–H104…O8 <sup>#4</sup>  | 0.83   | 2.30            | 3.128           | 179                    |
| O11A–H111…O7 <sup>#5</sup>  | 0.81   | 2.15            | 2.961           | 176                    |
| O11A-H112O10A <sup>#6</sup> | 0.82   | 2.61            | 3.416           | 165                    |
| O11A–H113…O9 <sup>#5</sup>  | 0.79   | 2.07            | 2.827           | 160                    |
| O11A-H114O10B <sup>#4</sup> | 0.83   | 2.13            | 2.939           | 164                    |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = x, y, z+1; #2 = x+1/2, -y+3/2, -z+1; #3 = x+1, y, z; #4 = -x+1, -y+1, z; #5 = x-1, y, z; #6 = -x+1, -y+1, z-1.

| Ce101                    | 2.459(4)    | Ce1–O13 <sup>#3</sup>                    | 2.488(4) | Ce206                     | 2.416(5) |
|--------------------------|-------------|------------------------------------------|----------|---------------------------|----------|
| Ce1–O3                   | 2.611(4)    | Ce1–O14 <sup>#4</sup>                    | 2.455(5) | Ce2–O9                    | 2.496(4) |
| Ce1–O7                   | 2.570(4)    | Ce1-015                                  | 2.526(5) | Ce2011                    | 2.604(5) |
| Ce1–O8                   | 2.595(4)    | Ce2–O2 <sup>#5</sup>                     | 2.391(4) | Ce2-O12                   | 2.572(4) |
| Ce1–O8 <sup>#1</sup>     | 2.561(4)    | Ce2–O4                                   | 2.645(4) | Ce2016                    | 2.688(5) |
| Ce1-O10 <sup>#2</sup>    | 2.509(4)    | Ce2–O5 <sup>#6</sup>                     | 2.417(4) | Ce2017                    | 2.596(5) |
|                          |             |                                          |          |                           |          |
| O1-Ce1-O3                | 62.8(1)     | O8–Ce1–O14 <sup>#4</sup>                 | 127.2(1) | O4–Ce2–O12                | 132.0(1) |
| O1-Ce1-O7                | 79.4(2)     | O8-Ce1-O15                               | 117.1(2) | O4-Ce2-O16                | 132.8(1) |
| O1-Ce1-O8                | 121.0(1)    | $O8^{\#1}$ -Ce1-O10 <sup>#2</sup>        | 96.0(1)  | O4-Ce2-O17                | 129.5(1) |
| O1–Ce1–O8 <sup>#1</sup>  | 130.5(1)    | $O8^{\#1}$ -Ce1-O13 <sup>\#3</sup>       | 148.4(2) | O5 <sup>#6</sup> –Ce2–O6  | 126.4(2) |
| $O1-Ce1-O10^{#2}$        | 133.3(2)    | $O8^{\#1}$ -Ce1-O14 <sup>#4</sup>        | 71.0(2)  | O5 <sup>#6</sup> –Ce2–O9  | 82.3(2)  |
| O1–Ce1–O13 <sup>#3</sup> | 68.9(2)     | O8 <sup>#1</sup> –Ce1–O15                | 75.8(1)  | O5 <sup>#6</sup> –Ce2–O11 | 144.6(2) |
| O1–Ce1–O14 <sup>#4</sup> | 72.7(2)     | $O10^{\#2}$ -Ce1-O13 <sup>#3</sup>       | 72.9(2)  | O5 <sup>#6</sup> –Ce2–O12 | 149.9(2) |
| O1-Ce1-O15               | 121.9(2)    | O10 <sup>#2</sup> -Ce1-O14 <sup>#4</sup> | 139.5(2) | O5 <sup>#6</sup> –Ce2–O16 | 82.5(2)  |
| O3-Ce1-O7                | 77.3(1)     | O10 <sup>#2</sup> –Ce1–O15               | 68.1(2)  | O5 <sup>#6</sup> –Ce2–O17 | 81.7(2)  |
| O3-Ce1-O8                | 72.1(1)     | O13 <sup>#3</sup> -Ce1-O14 <sup>#4</sup> | 97.9(2)  | O6–Ce2–O9                 | 81.9(2)  |
| O3–Ce1–O8 <sup>#1</sup>  | 74.9(1)     | O13 <sup>#3</sup> –Ce1–O15               | 72.5(2)  | O6-Ce2-O11                | 74.2(2)  |
| O3–Ce1–O10 <sup>#2</sup> | 142.6(1)    | O14 <sup>#4</sup> –Ce1–O15               | 71.5(2)  | O6-Ce2-O12                | 74.9(2)  |
| O3–Ce1–O13 <sup>#3</sup> | 131.4(1)    | O2 <sup>#5</sup> –Ce2–O4                 | 70.6(2)  | O6-Ce2-O16                | 136.4(2) |
| O3–Ce1–O14 <sup>#4</sup> | 72.6(2)     | $O2^{\#5}$ -Ce2-O5 <sup>#6</sup>         | 83.1(2)  | O6-Ce2-O17                | 136.3(2) |
| O3-Ce1-O15               | 139.2(2)    | O2 <sup>#5</sup> –Ce2–O6                 | 78.5(2)  | O9-Ce2-O11                | 72.0(1)  |
| O7–Ce1–O8                | 54.3(1)     | O2 <sup>#5</sup> –Ce2–O9                 | 141.3(2) | O9–Ce2–O12                | 125.1(1) |
| O7–Ce1–O8 <sup>#1</sup>  | 116.1(1)    | O2 <sup>#5</sup> –Ce2–O11                | 131.9(2) | O9–Ce2–O16                | 139.2(2) |
| O7–Ce1–O10 <sup>#2</sup> | 74.7(1)     | O2 <sup>#5</sup> –Ce2–O12                | 81.1(2)  | O9–Ce2–O17                | 68.5(2)  |
| O7–Ce1–O13 <sup>#3</sup> | 90.0(2)     | O2 <sup>#5</sup> –Ce2–O16                | 73.2(2)  | O11-Ce2-O12               | 54.1(1)  |
| O7–Ce1–O14 <sup>#4</sup> | 145.8(2)    | O2 <sup>#5</sup> –Ce2–O17                | 143.5(2) | O11-Ce2-O16               | 101.3(2) |
| O7-Ce1-O15               | 142.0(2)    | O4–Ce2–O5 <sup>#6</sup>                  | 64.2(2)  | O11-Ce2-O17               | 66.6(2)  |
| O8–Ce1–O8 <sup>#1</sup>  | 62.7(2)     | O4–Ce2–O6                                | 62.2(1)  | O12-Ce2-O16               | 68.5(2)  |
| O8–Ce1–O10 <sup>#2</sup> | 71.6(1)     | O4–Ce2–O9                                | 70.8(1)  | O12-Ce2-O17               | 96.2(2)  |
| O8–Ce1–O13 <sup>#3</sup> | 134.9(1)    | O4-Ce2-O11                               | 125.4(1) | O16-Ce2-O17               | 72.0(2)  |
| Hydrogen bondi           | ng contacts |                                          |          |                           |          |

**Table S5.** Selected Interatomic Distances (Å) and Bond Angles (deg) for  $5^{a}$ 

 $D - H \cdots A$  $\angle (D - H \cdots A)$  $d(H \cdots A)$ d(D-H) $d(D \cdots A)$ O3–H3A…O7<sup>#8</sup> 0.83 2.05 2.869 173 O4-H4A...O16<sup>#7</sup> 0.83 2.32 3.133 171 O15-H15A…O17<sup>#4</sup> 0.84 2.06 2.886 166  $O15\text{--}H15B\cdots O9^{\#1}$ 0.84 2.07 2.877 161 O16-H16A…O1<sup>#10</sup> 0.84 2.16 2.954 158 O16-H16B...O6<sup>#6</sup> 0.84 2.49 3.041 124 O17-H17A····O13<sup>#6</sup> 0.84 2.09 2.923 169 <u>017–H17B···015</u><sup>#2</sup> 2.854 0.85 2.01 171

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 = -x, -y+1, -z; #2 = -x+1, -y+1, -z; #3 = x+1, y, z+1; #4 = x, y, z+1; #5 = x, -y+1/2, z-1/2; #6 = x+1, y, z; #7 = x-1, y, z; #8 = x, -y+1/2, z+1/2; #9 = x, y, z+1; #10 = x, y, z-1

## **Figure captions**

- Figure S1. PXRD patterns measured, simulated along with the i.r. spectrum for 1.
- Figure S2. PXRD patterns measured, simulated along with the i.r. spectrum for 2.
- Figure S3. PXRD patterns measured, simulated along with the i.r. spectrum for 3.
- Figure S4. PXRD patterns measured, simulated along with the i.r. spectrum for 4.
- Figure S5. PXRD patterns measured, simulated along with the i.r. spectrum for 5.
- **Figure S6.** 2D  $^{2}_{\infty}$  [Ce<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>] network, 3D  $^{3}_{\infty}$  {  $^{2}_{\infty}$  [M<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>](SO<sub>4</sub>)} framework along with the corresponding topological nets in **2**.
- **Figure S7.** 2D  ${}^{2}_{\infty}$  [Ce<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>] network, 3D  ${}^{3}_{\infty}$  { $}^{2}_{\infty}$  [M<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>](SO<sub>4</sub>)} framework along with the corresponding topological nets in **3**.
- **Figure S8.** 2D  $^{2}_{\infty}$  [Ce<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>] network, 3D  $^{3}_{\infty}$  {  $^{2}_{\infty}$  [M<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>(L-tar)<sub>2</sub>](SO<sub>4</sub>)} framework along with the corresponding topological nets in **4**.
- Figure S9. TG curves for 1-5.



















Figure S6.





Figure S8.

=

