Oxalyl Dihydrazide Polymorphism: a Periodic Dispersion-Corrected DFT and MP2 Investigation.

- Electronic Supporting Information -

Davide Presti, Alfonso Pedone, Maria Cristina Menziani, Bartolomeo Civalleri, Lorenzo Maschio

A) k-points and Energy Cutoff Screening

PBE-TS (NCPP) - cutoff: 750 eV			
k-pt. mesh	k-pt. dist. (1/Å)	Energy (eV/atom)	
1x1x1 (Г)	-	-167.140499	
3x1x1	0.10	-167.310192	
3x2x1	0.08	-167.311698	
5x2x2	0.06	-167.312090	
7x4x3	0.04	-167.312105	

Table 1 Single-point energy of crystalline oxalyl dihydrazide (α phase) as a function of increasing k-points mesh size. Results are reported in eV per atom.

PBE-TS - k-points mesh size: 7x4x3				
Energy c	cutoff (eV)	Energy (eV/atom)	ΔE (meV/atom)	
NCPP	750	-167.312105	-	
	800	-167.313536	-1.431	
	850	-167.314699	-1.163	
	900	-167.315604	-0.905	

Table 2 Single-point energy (eV) of crystalline oxalyl dihydrazide (α phase) as a function of increasing kinetic energy cutoff. Results for ΔE are reported in meV per atom for convenience.

B) Relative Stability at the Experimental Geometry

Experimental Relative Stability - ΔE				
Phase	PBE-TS (kJ/mol)	PBE-D (kJ/mol)		
α	-	-		
β	11.371	4.718		
γ	-26.884	-28.821		
δ	2.330	0.848		
ϵ	66.761	64.121		

Table 3 PBE-TS and PBE-D experimental relative stability (per molecule) of crystalline oxalyl dihydrazide. The α -polymorph is taken as reference.