Electronic Supplementary Information (ESI)

Self-assembly of $[Cu_3I_2]$ - or $[CuI]_n$ -based (n = 2, 4, and ∞) coordination polymers from unsymmetrical bis(pyridyl) and in situ ligands: synthesis, structures, and properties

Zhu-Yan Zhang, Zhao-Peng Deng, Xian-Fa Zhang, Li-Hua Huo, Hui Zhao and Shan Gao

Electronic Supplementary Information for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2013

2-(pyridin-2-ylmethylthio)pyridine 12a

N-(pyridin-2-ylmethyl)pyridin-2-amine12c

N-(pyridin-2-ylmethylene)pyridin-3-amine 12d,e

Scheme S1 Schematic representation of the unsymmetrical bis(pyridyl) ligands in reported Cu(I) complexes.

Scheme S2 Proposed mechanism for the formation of complexes 1 and 3.^{S1}

References

S1 (a) J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan and B. Han, *Chem. Commun.*, 2010,
46, 5770-5772; (b) B. Xu, R. J. Madix and C. M. Friend, *Chem. Eur. J.*, 2012, 18, 2313-2318.

Disorder of complexes 2, 4 and 5

The acetonitrile of complex **2** is eliminated with SQUEEZE during resolution of the structure but added to total atom count. The free water molecule in complex **4** is disordered over two positions with the ratio of 0.55:0.45. In complex **5**, the ligand **L3** is disordered about the center of the aliphatic C-N bond. Meanwhile, the C and N atom in this aliphatic C-N bond have the same chance to occupy the two positions. Therefore, during the refinement, the C and N atom is refined with fifty percent occupancy in the two positions of aliphatic C-N bond.

Fig. S1 (a) XPS spectrum of 1 in the range corresponding to the O1s level; (b) XPS spectrum of 1.

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction (PXRD) patterns for solid samples of **1-5** are measured at room temperature as illustrated in Fig. S2. The patterns are highly similar to their simulated ones (based on the single-crystal X-ray diffraction data), indicating that the single-crystal structures are really representative of the bulk of the corresponding samples.

Fig. S2 PXRD patterns for 1-5.

Thermogravimetric analysis (TGA)

The thermal stabilities of 1-5 were analyzed on crystalline samples by thermogravimetric analyses (TGA) from room temperature to 900 °C at a rate of 10 °C min⁻¹ under N₂ atmosphere. As shown in Fig. S3, the TG curves indicated that 1 was stable up to ca. 120 °C and the initial weight loss in the temperature range 120-330 °C was due to the decomposition of L1a (obsd 52.59%, calcd 52.82%). Over the range 330-600 °C, the weight loss should correspond to the sublimation of iodine (obsd 31.48%, calcd 31.44%). The TG curve for 2 showed a minor weight loss in the temperature range 63-108 °C, which corresponded to the loss of acetonitrile molecule (obsd 3.41%, calcd 3.71%). Then, the **dmtrz** was decomposed in the temperature range 180-375 °C, with a weight loss of 45.02% (calcd 44.64%). Further weight loss of 34.64% in the temperature range 375-610 °C was consistent with the sublimation of iodine (calcd 34.42%). The first weight loss of **3** occurred in the temperature range 204-335 °C, corresponding to the decomposition of L1b (obsd 32.26%, calcd 32.48%). Then, the second weight loss of 45.31% in the temperature range 335-540 °C was consistent with the sublimation of iodine (calcd 44.99%). For 4, the minor weight loss of 1.77% in the temperature range 60-85 °C was caused by the loss of free water molecule (calcd 1.57%). After that, the L2 was decomposed in the temperature range 130-345 °C, with a weight loss of 31.86% (calcd 32.2%). Over the range 345-484 °C, the weight loss should correspond to the sublimation of iodine (obsd 44.21%, calcd 44.13%). The initial weight loss of 5 in the temperature range 160-376 °C was due to the decomposition of L3 (obsd 32.61%, calcd 32.72%). Over the range 376-702 °C, the weight loss should correspond to the sublimation of iodine (obsd 44.69%, calcd 44.83%).

Fig. S3 TG curves of 1-5 at N₂ atmosphere.

Fig. S4 Layer structure of **1** extended by the $\pi \cdots \pi$ interactions (green dashed lines). Orange and purple ball-and-stick modes represented different double chains.

Fig. S5 Double layer structure of 2 with the acetonitrile molecules were omitted for clarity.

Fig. S6 Layer structure of 2 extended by the C-H \cdots I interactions (green dashed lines). The other two phenyl rings of the PPh₃ molecules were omitted for clarity.

Fig. S7 3-D supramolecular architecture of **4** extended by the $\pi \cdots \pi$ interactions (green dashed lines) with free water molecules encapsulated in the 1-D channels.

Fig. S8 Emission spectrum of free ligand L2 in solid state.

Electronic Supplementary Information for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2013

Table S1 Selected bond lengths for $1-5^a$			
1			
Cu(1)-N(1)	2.078(7)	Cu(1)-I(1) ⁱⁱ	2.6711(19)
$Cu(1)-N(3)^{i}$	2.083(7)	Cu(1)- $Cu(1)$ ⁱⁱ	2.717(3)
Cu(1)-I(1)	2.6246(17)		
2			
I(1)-Cu(1)	2.8447(9)	Cu(1)-Cu(2)	2.9027(6)
$Cu(1)-N(2)^{ii}$	1.958(4)	Cu(2)-N(1)	1.952(5)
Cu(1)-P(1)	2.1934(5)	Cu(2)-I(1) ⁱ	2.5671(6)
Cu(1)-I(1) ⁱ	2.8520(6)	I(1)-Cu(2)	2.5671(6)
3			
I(1)-Cu(1)	2.6048(13)	Cu(1)-N(2)	2.119(7)
I(1)-Cu(2)	2.6285(15)	$Cu(1)$ - $Cu(2)^{i}$	2.665(2)
$I(1)-Cu(2)^{i}$	2.7797(18)	$Cu(2)-N(3)^{ii}$	2.049(7)
I(2)-Cu(1)	2.5738(15)	Cu(2)-I(2) ⁱ	2.6777(15)
$I(2)-Cu(2)^{i}$	2.6777(15)	Cu(2)-I(1) ⁱ	2.7797(18)
Cu(1)-N(1)	2.077(7)		
4			
Cu(1)-N(1)	2.030(8)	Cu(2)-I(3)	2.7261(16)
Cu(1)-Cu(3)	2.645(2)	Cu(2)-Cu(4)	2.839(2)
Cu(1)-Cu(4)	2.658(2)	$Cu(3)-N(3)^{i}$	2.013(9)
Cu(1)-I(3)	2.6699(16)	Cu(3)-I(2)	2.6502(16)
Cu(1)-Cu(2)	2.674(2)	Cu(3)-I(4)	2.6826(17)
Cu(1)-I(1)	2.6777(15)	Cu(3)-I(1)	2.7209(16)
Cu(1)-I(2)	2.7759(17)	Cu(3)-Cu(4)	2.818(2)
Cu(2)-N(4)	2.028(8)	$Cu(4)-N(6)^{ii}$	2.042(8)
Cu(2)-Cu(3)	2.618(2)	Cu(4)-I(3)	2.6497(17)
Cu(2)-I(1)	2.7002(16)	Cu(4)-I(4)	2.6592(16)
Cu(2)-I(4)	2.7193(16)	Cu(4)-I(2)	2.7516(17)
5			
I(1)-Cu(1)	2.6497(9)	Cu(1)-I(1) ⁱ	2.6846(11)
Cu(1)-N(1)	1.973(7)	$Cu(1)-I(1)^{iv}$	2.7016(9)

Cu(1)-N(3)ⁱⁱⁱ 2.07(4) Cu(1)-Cu(1)^v 2.751(2) ^{*a*} Symmetry operations: For 1, i x,y-1,z; ii -x+1,-y,-z+1. For 2, i -x+3/2,-y+3/2,z; ii x,-y+3/2,z-1/2. For 3, i -x,-y+1,-z+1; ii x-1/2,-y+1/2,z+1/2. For 4, i x,-y+1,z-1/2; ii -x+1,y-1,-z+1/2. For 5, i -x+1,-y+1,-z+1; iii -x+1,y,-z+1/2; iv x,y-1,z; v -x+1,-y,-z+1.