Self-assembly of $\left[\mathrm{Cu}_{3} \mathbf{I}_{2}\right]$ or $[\mathrm{CuI}]_{n}$-based ($n=2,4$, and ∞) coordination polymers from unsymmetrical bis(pyridyl) and in situ ligands: synthesis, structures, and properties

Zhu-Yan Zhang, Zhao-Peng Deng, Xian-Fa Zhang, Li-Hua Huo, Hui Zhao and Shan Gao

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

2-(pyridin-2-ylmethylthio)pyridine ${ }^{12 a}$

(pyridin-2-ylmethylene)isonicotinohydrazonic acid ${ }^{12 b}$

N-(pyridin-2-ylmethyl)pyridin-2-amine ${ }^{12 c}$

N-(pyridin-2-ylmethylene)pyridin-3-amine ${ }^{12 d, e}$

Scheme S1 Schematic representation of the unsymmetrical bis(pyridyl) ligands in reported $\mathrm{Cu}(\mathrm{I})$ complexes.

CO_{2} (from the solution)

Scheme S2 Proposed mechanism for the formation of complexes $\mathbf{1}$ and 3. ${ }^{\text {S1 }}$

References

S1 (a) J. Liu, C. Guo, Z. Zhang, T. Jiang, H. Liu, J. Song, H. Fan and B. Han, Chem. Commun., 2010,
46, 5770-5772; (b) B. Xu, R. J. Madix and C. M. Friend, Chem. Eur. J., 2012, 18, 2313-2318.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Disorder of complexes 2, 4 and 5

The acetonitrile of complex 2 is eliminated with SQUEEZE during resolution of the structure but added to total atom count. The free water molecule in complex $\mathbf{4}$ is disordered over two positions with the ratio of 0.55:0.45. In complex 5, the ligand $\mathbf{L} \mathbf{3}$ is disordered about the center of the aliphatic $\mathrm{C}-\mathrm{N}$ bond. Meanwhile, the C and N atom in this aliphatic $\mathrm{C}-\mathrm{N}$ bond have the same chance to occupy the two positions. Therefore, during the refinement, the C and N atom is refined with fifty percent occupancy in the two positions of aliphatic C-N bond.

(a)

(b)

Fig. S1 (a) XPS spectrum of $\mathbf{1}$ in the range corresponding to the O1s level; (b) XPS spectrum of $\mathbf{1}$.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Powder X-ray diffraction (PXRD)

Powder X-ray diffraction (PXRD) patterns for solid samples of 1-5 are measured at room temperature as illustrated in Fig. S2. The patterns are highly similar to their simulated ones (based on the single-crystal X-ray diffraction data), indicating that the single-crystal structures are really representative of the bulk of the corresponding samples.

Fig. S2 PXRD patterns for $\mathbf{1 - 5}$.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Thermogravimetric analysis (TGA)

The thermal stabilities of $\mathbf{1 - 5}$ were analyzed on crystalline samples by thermogravimetric analyses (TGA) from room temperature to $900{ }^{\circ} \mathrm{C}$ at a rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ under N_{2} atmosphere. As shown in Fig. S3, the TG curves indicated that 1 was stable up to ca. $120^{\circ} \mathrm{C}$ and the initial weight loss in the temperature range $120-330{ }^{\circ} \mathrm{C}$ was due to the decomposition of L1a (obsd 52.59%, calcd 52.82%). Over the range $330-600^{\circ} \mathrm{C}$, the weight loss should correspond to the sublimation of iodine (obsd 31.48%, calcd 31.44%). The TG curve for 2 showed a minor weight loss in the temperature range $63-108{ }^{\circ} \mathrm{C}$, which corresponded to the loss of acetonitrile molecule (obsd 3.41%, calcd 3.71%). Then, the dmtrz ${ }^{-}$was decomposed in the temperature range $180-375^{\circ} \mathrm{C}$, with a weight loss of 45.02% (calcd 44.64%). Further weight loss of 34.64% in the temperature range $375-610{ }^{\circ} \mathrm{C}$ was consistent with the sublimation of iodine (calcd 34.42%). The first weight loss of $\mathbf{3}$ occurred in the temperature range $204-335{ }^{\circ} \mathrm{C}$, corresponding to the decomposition of L1b (obsd 32.26%, calcd 32.48%). Then, the second weight loss of 45.31% in the temperature range $335-540{ }^{\circ} \mathrm{C}$ was consistent with the sublimation of iodine (calcd 44.99%). For 4, the minor weight loss of 1.77% in the temperature range $60-85^{\circ} \mathrm{C}$ was caused by the loss of free water molecule (calcd 1.57%). After that, the $\mathbf{L} \mathbf{2}$ was decomposed in the temperature range $130-345^{\circ} \mathrm{C}$, with a weight loss of 31.86% (calcd 32.2%). Over the range $345-484^{\circ} \mathrm{C}$, the weight loss should correspond to the sublimation of iodine (obsd 44.21%, calcd 44.13%). The initial weight loss of 5 in the temperature range $160-376{ }^{\circ} \mathrm{C}$ was due to the decomposition of $\mathbf{L} \mathbf{3}$ (obsd 32.61%, calcd 32.72%). Over the range $376-702{ }^{\circ} \mathrm{C}$, the weight loss should correspond to the sublimation of iodine (obsd 44.69%, calcd 44.83%).

Fig. S3 TG curves of $\mathbf{1 - 5}$ at N_{2} atmosphere.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Fig. S4 Layer structure of $\mathbf{1}$ extended by the $\pi \cdots \pi$ interactions (green dashed lines). Orange and purple ball-and-stick modes represented different double chains.

Fig. S5 Double layer structure of $\mathbf{2}$ with the acetonitrile molecules were omitted for clarity.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Fig. S6 Layer structure of $\mathbf{2}$ extended by the C-H \cdots I interactions (green dashed lines). The other two phenyl rings of the PPh_{3} molecules were omitted for clarity.

Fig. S7 3-D supramolecular architecture of $\mathbf{4}$ extended by the $\pi \cdots \pi$ interactions (green dashed lines) with free water molecules encapsulated in the 1-D channels.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Fig. S8 Emission spectrum of free ligand $\mathbf{L} \mathbf{2}$ in solid state.

Electronic Supplementary Information for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2013

Table S1 Selected bond lengths for $\mathbf{1 - 5}^{a}$

1			
$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.078(7)	$\mathrm{Cu}(1)-\mathrm{I}(1)^{\text {ii }}$	2.6711(19)
$\mathrm{Cu}(1)-\mathrm{N}(3)^{\text {i }}$	2.083(7)	$\mathrm{Cu}(1)-\mathrm{Cu}(1)^{\mathrm{ii}}$	2.717(3)
$\mathrm{Cu}(1)-\mathrm{I}(1)$	2.6246(17)		
2			
$\mathrm{I}(1)-\mathrm{Cu}(1)$	2.8447(9)	$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.9027(6)
$\mathrm{Cu}(1)-\mathrm{N}(2)^{\mathrm{ii}}$	1.958(4)	$\mathrm{Cu}(2)-\mathrm{N}(1)$	$1.952(5)$
$\mathrm{Cu}(1)-\mathrm{P}(1)$	2.1934(5)	$\mathrm{Cu}(2)-\mathrm{I}(1)^{\mathrm{i}}$	2.5671(6)
$\mathrm{Cu}(1)-\mathrm{I}(1)^{\text {i }}$	2.8520(6)	$\mathrm{I}(1)-\mathrm{Cu}(2)$	2.5671(6)
3			
$\mathrm{I}(1)-\mathrm{Cu}(1)$	2.6048(13)	$\mathrm{Cu}(1)-\mathrm{N}(2)$	2.119(7)
$\mathrm{I}(1)-\mathrm{Cu}(2)$	2.6285(15)	$\mathrm{Cu}(1)-\mathrm{Cu}(2)^{\text {i }}$	2.665(2)
$\mathrm{I}(1)-\mathrm{Cu}(2)^{\text {i }}$	$2.7797(18)$	$\mathrm{Cu}(2)-\mathrm{N}(3)^{\text {ii }}$	2.049(7)
$\mathrm{I}(2)-\mathrm{Cu}(1)$	$2.5738(15)$	$\mathrm{Cu}(2)-\mathrm{I}(2)^{\text {i }}$	2.6777(15)
$\mathrm{I}(2)-\mathrm{Cu}(2)^{\text {i }}$	2.6777(15)	$\mathrm{Cu}(2)-\mathrm{I}(1)^{\text {i }}$	2.7797(18)
$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.077(7)		
4			
$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.030(8)	$\mathrm{Cu}(2)-\mathrm{I}(3)$	2.7261(16)
$\mathrm{Cu}(1)-\mathrm{Cu}(3)$	2.645(2)	$\mathrm{Cu}(2)-\mathrm{Cu}(4)$	2.839(2)
$\mathrm{Cu}(1)-\mathrm{Cu}(4)$	2.658(2)	$\mathrm{Cu}(3)-\mathrm{N}(3)^{\text {i }}$	2.013(9)
$\mathrm{Cu}(1)-\mathrm{I}(3)$	2.6699(16)	$\mathrm{Cu}(3)-\mathrm{I}(2)$	2.6502(16)
$\mathrm{Cu}(1)-\mathrm{Cu}(2)$	2.674(2)	$\mathrm{Cu}(3)-\mathrm{I}(4)$	2.6826(17)
$\mathrm{Cu}(1)-\mathrm{I}(1)$	2.6777(15)	$\mathrm{Cu}(3)-\mathrm{I}(1)$	2.7209(16)
$\mathrm{Cu}(1)-\mathrm{I}(2)$	2.7759(17)	$\mathrm{Cu}(3)-\mathrm{Cu}(4)$	2.818(2)
$\mathrm{Cu}(2)-\mathrm{N}(4)$	2.028(8)	$\mathrm{Cu}(4)-\mathrm{N}(6)^{\text {ii }}$	2.042(8)
$\mathrm{Cu}(2)-\mathrm{Cu}(3)$	2.618(2)	$\mathrm{Cu}(4)-\mathrm{I}(3)$	2.6497(17)
$\mathrm{Cu}(2)-\mathrm{I}(1)$	2.7002(16)	$\mathrm{Cu}(4)-\mathrm{I}(4)$	2.6592(16)
$\mathrm{Cu}(2)-\mathrm{I}(4)$	2.7193(16)	$\mathrm{Cu}(4)-\mathrm{I}(2)$	2.7516(17)
5			
$\mathrm{I}(1)-\mathrm{Cu}(1)$	2.6497(9)	$\mathrm{Cu}(1)-\mathrm{I}(1)^{\text {i }}$	2.6846(11)
$\mathrm{Cu}(1)-\mathrm{N}(1)$	1.973(7)	$\mathrm{Cu}(1)-\mathrm{I}(1)^{\text {iv }}$	2.7016(9)

$\mathrm{Cu}(1)-\mathrm{N}(3)^{\text {iii }} \quad 2.07(4) \quad \mathrm{Cu}(1)-\mathrm{Cu}(1)^{\mathrm{v}} \quad$ 2.751(2)
${ }^{a}$ Symmetry operations: For 1, i $x, y-1, z$; ii $-x+1,-y,-z+1$. For 2, i $-x+3 / 2,-y+3 / 2, z$; ii $x,-y+3 / 2, z-1 / 2$. For 3, i $-x,-y+1,-z+1$; ii $x-1 / 2,-y+1 / 2, z+1 / 2$. For 4, i $x,-y+1, z-1 / 2$; ii $-x+1, y-1,-z+1 / 2$. For 5, $1-x+1,-y+1,-z+1$; iii $-x+1, y,-z+1 / 2$; iv $x, y-1, z ; v-x+1,-y,-z+1$.

