Electronic Supplementary Information (ESI)

A 1:1 intercluster compound consisting of +6 and –6 charged Rh^{III}₄Zn^{II}₄ octanuclear cations and anions with aminothiolate ligands

Nobuto Yoshinari, Ukyo Yamashita and Takumi Konno

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan E-mail: konno@chem.sci.osaka-u.ac.jp

Experimental Section.

Preparation of compounds.

(Δ)₄-K₆[Zn₄O{Rh(L-cys)₃}₄] ((Δ)₄-K₆[1]) and (Δ)₄/(Δ)₄-[Zn₄O{Rh(aet)₃}₄]Br₆ ((Δ)₄/(Δ)₄-[2]Br₆). These complexes were prepared as described in the literature.¹¹ For (Δ)₄-K₆[1]: Anal. Calcd for K₆[1]·47.5H₂O = C₃₆H₁₅₅N₁₂O_{72.5}Rh₄S₁₂Zn₄: C, 13.47; H, 4.87; N, 5.24%. Found: C, 13.18; H, 4.58; N, 5.10%. For (Δ)₄/(Δ)₄-[2]Br₆: Anal. Calcd for [2]·Br₆·NaBr·8H₂O = C₂₄H₈₈Br₇N₁₂Na₁O₉Rh₄S₁₂Zn₄: C, 12.38; H, 3.81; N, 7.22%. Found: C, 12.33; H, 3.76; N, 6.97%.

 $(\Delta)_4 - [Zn_4O{Rh(aet)_3}_4](NO_3)_6$ $([2](NO_3)_6).$ То а solution containing $(\Delta)_4$ -[Zn₃OH{Rh(aet)₃}₄](NO₃)₅ ^{S1} (27 mg, 15 µmol) in water (10 mL) was added an aqueous solution of Zn(NO₃)₂ (66 mM, 0.22 mL, 14 µmol). The mixture was heated at 50°C for 2.5 h and then evaporated to dryness. The orange-yellow residue was dissolved in water (2 mL) and filtered off, followed by the addition of several drops of a saturated aqueous solution of NaNO₃ to the filtrate. After the orange solution was stood in a refrigerator for a week, the resulting yellow crystalline powder was collected by filtration. Yield: (32%). Anal. Calcd for $[2](NO_3)_6 \cdot 5H_2O$ 10 mg = C₂₄H₈₂N₁₈O₂₄Rh₄S₁₂Zn₄: C, 13.96; H, 4.00; N, 12.21%. Found: C, 13.91; H, 3.96; N, 12.17%.

$(\Delta)_4/(\Lambda)_4-[Zn_4O{Rh(aet)_3}_4](\Delta)_4-[Zn_4O{Rh(L-cys)_3}_4] (3)$

A solution containing $(\Delta)_4$ -K₆[1]·49H₂O (26 mg, 10 µmol) in an aqueous NaOAc/HOAc buffer solution (75 mM, pH 4.5, 10 mL) was slowly layered under an aqueous NaOAc/HOAc buffer solution (75 mM, pH 4.5, 10 mL). Then, a solution containing $(\Delta)_4/(\Lambda)_4$ -[2]Br₆·NaBr·8H₂O (24 mg, 10 µmol) in an aqueous NaOAc/HOAc buffer solution (7.5 mM, pH 4.5, 10 mL) was layered on the top of the two-layered solution. The three-layered solution was stood at room temperature for 2 weeks, and the resulting yellow block crystals were collected by filtration. Yield: 19 mg (44%). Anal. Calcd for [2][1]·35H₂O = C₆₀H₂₀₂N₂₄O₆₁Rh₈S₂₄Zn₈: C, 16.56; H, 4.68; N, 7.72%. Found: C, 16.37; H, 4.59; N, 7.51%. IR (KBr disk, cm⁻¹): 1616 (COO⁻).

$(\Delta)_4$ -[Zn₄O{Rh(aet)₃}₄](Δ)₄-[Zn₄O{Rh(L-cys)₃}₄] (3')

Yellow block crystals for **3**' was obtained by a method used for **3**, employing $(\Delta)_4$ -[**2**](NO₃)₆·5H₂O instead of $(\Delta)_4/(\Lambda)_4$ -[**2**]Br₆·NaBr·8H₂O in a half scale. Yield: 12

mg (56%). Anal. Calcd for [2][1]·40H₂O = C₆₀H₂₁₂N₂₄O₆₆Rh₈S₂₄Zn₈: C, 16.22; H, 4.81; N, 7.57%. Found: C, 15.93; H, 4.64; N, 7.38%.

X-ray crystallography.

Single-crystal X-ray diffraction measurements were made on a Rigaku RAXIS VII or a Rigaku RAXIS-RAPID imaging plate area detectors with a graphite monochromated Mo-K α radiation. The intensity data were collected by the ω scan mode. Empirical absorption corrections were applied. The structures were solved by a direct method using SHELXS-97.^{S2} All calculations were performed by using the Yadokari-XG software package ^{S3} except for the refinement which was performed by using SHELXL-97.^{S2}

For $K_6[1]$, five of six potassium ions were disordered into two positions, the occupancies of which were fixed to 0.5. The non-hydrogen atoms except for disordered atoms were refined anisotropically by full-matrix least-squares methods. Hydrogen atoms except those of water molecules were placed at calculated positions but were not refined.

For **3**, one cluster anion $(\Delta)_4$ -[**1**]⁶⁻ and one cluster cation [**2**]⁶⁺, besides solvated water molecules, were crystallographically independent. The cluster cation was disordered into two positions. Although not all C and N atoms in **3** were determined, the two disordered cation units were characterized as the $(\Delta)_4$ and $(\Lambda)_4$ isomers of [**2**]⁶⁺. The crystallographic data of **3** were summarized in Table S1, and the cluster cation and anion found in **3** illustrated in Fig. S1.

For **3'**, two methylene groups of aet ligand of cationic cluster were disordered into two positions, the occupancies of which were refined. The non-hydrogen atoms except for disordered atoms were refined anisotropically by full-matrix least-squares methods. Hydrogen atoms except those of water molecules were placed at calculated positions but were not refined.

- [S1] (a) S. Aizawa, Y. Sone, S. Yamada, M. Nakamura, Chem. Lett. 1998, 775. (b) T. Konno, K.
- Haneishi, M. Hirotsu, T. Yamaguchi, T. Ito, T. Yoshimura, J. Am. Chem. Soc. 2003, 125, 9244.
- [S2] G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
- [S3] C. Kabuto, S. Akine, T. Nemoto and E. Kwon, Yadokari-XG 2009, Program for the Refinement of Crystal Structures, Nihon Kessho Gakkaishi, 2009, 51, 218.

ampirical formula	$C_{\rm H}$ H \sim N \sim O Ph S 7 \sim
	$C_{60}\Pi_{132}$ IN 24 O_{67} KII 8 S_{24} ZII 8
IW	3308.//
size / mm ³	0.12 x 0.12 x 0.08
crystal system	Orthorhombic
space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No.19)
<i>a</i> /Å	24.113(2)
b/Å	26.524(2)
c /Å	28.3341(17)
$V/\text{\AA}^3$	18122(3)
Ζ	4
T/K	200(2)
<i>R</i> (int)	0.1978
$ ho_{ m calcd.}$ /g cm ⁻³	1.681
μ (Mo Ka), mm ⁻¹	2.103
$2\theta_{Max}$	55.0
total no. of data	173199
no. of unique data	41471
no. of parameters	1300
flack	0.069(19)
$R\left(I \ge 2\sigma(I)\right)^{a}$	0.0981
Rw^{b}	0.2831
^a $R_1 = \Sigma (Fo - Fc) /$	$\Sigma(Fo).$
^b $R_{\rm W} = \left[\sum_{w} (E_0^2 - E_0^2) \right]$	$(E_0^2)^2 / \Sigma w (E_0^2)^2]^{1/2}$

 Table S1. Crystal data of 3.

Fig. S1. Molecular structure of (a) the cluster anion and (b) the cluster cation in **3**. Color code; Rh: blue-green, Zn: blue gray, S: yellow, O: pink, N: blue, C: gray.

Fig. S2. A schematic drawing of the packing structure of **3'**. The **dia** net of the cluster anions $([1]^{6-}; \text{ pink})$ accommodates cluster cations $([2]^{6+}; \text{ blue})$ in its cavities.

Fig. S3. IR spectra of (a) $(\Delta)_4$ -K₆[1], (b) **3**, and (c) **3'** (KBr disks).