### **Electronic Supporting Information (ESI)**



Fig. S1. Representation of the acetone disorder in 1a (a). Structure of the hexameric calixarene units found in the inclusion compound of 1 with acetone, viewed down the crystallographic *c*-axis (b) and *b*-axis (c), respectively. H-bond contacts are shown as broken lines.

c)



**Fig. S2.** <sup>1</sup>H NMR spectrum of **1** in CDCl<sub>3</sub> at T = 277 K.



Fig. S3. COSY spectrum of 1 in CDCl<sub>3</sub> at 277 K.



Fig. S4. NOESY spectrum of 1 in CDCl<sub>3</sub> at 277 K.



Fig. S5. ROESY spectrum of 1 in CDCl<sub>3</sub> at 277 K.



Fig. S6. HSQC spectrum of 1 in CDCl<sub>3</sub> at 277 K.



Fig. S7. HMBC spectrum of 1 in CDCl<sub>3</sub> at 277 K.

| Atoms              | oms Symmetry                                                 |          | Distances (Å)     |         |  |
|--------------------|--------------------------------------------------------------|----------|-------------------|---------|--|
|                    |                                                              | D···A    | H…A               | D−H···A |  |
| 1                  |                                                              |          |                   |         |  |
| C(9)-H(9A)O(2)     | 0.33+y, 0.66-x+y, 0.66-z                                     | 3.451(2) | 2.63              | 140     |  |
| C(1)-H(1B)O(3)     | 0.33+ <i>x</i> - <i>y</i> , -0.33+ <i>x</i> , 0.66- <i>z</i> | 3.439(2) | 2.63              | 139     |  |
| C(29)-H(29)O(5)    | 0.33+ <i>x</i> - <i>y</i> , -0.33+ <i>x</i> , 0.66- <i>z</i> | 3.282(2) | 2.61              | 128     |  |
| C(11)-H(11)O(6)    | 0.33+y, $0.33-x+y$ , $0.66-z$                                | 3.349(2) | 2.70              | 127     |  |
| 19                 |                                                              |          |                   |         |  |
| C(9)-H(9A)O(1)     | 1+x, 1-x+y, 2-z                                              | 3.416(3) | 2.61              | 138     |  |
| C(1)-H(1B)O(2)     | x-y, -1+x, 2-z                                               | 3.428(3) | 2.62              | 139     |  |
| C(29)-H(29)O(5)    | x-y, -1+x, 2-z                                               | 3.343(3) | 2.70              | 126     |  |
| С(11)-Н(11)О(6)    | 1+ <i>x</i> , 1- <i>x</i> + <i>y</i> , 2- <i>z</i>           | 3.264(3) | 2.60              | 127     |  |
| 1b                 |                                                              |          |                   |         |  |
| C(17)-H(17A)O(5)   | 0.5+x, y, 0.5-z                                              | 3.414(4) | 2.49              | 156     |  |
| C(1G)-H(1G)O(5)    | -0.5+x, y, 0.5-z                                             | 3.106(5) | 2.44              | 123     |  |
| C(1H)-(H1H)O(5)    | -0.5+x, y, 0.5-z                                             | 3.361(4) | 2.56              | 137     |  |
| C(25)-H(25B)O(6)   | 2-x, $-0.5+y$ , $0.5-z$                                      | 3.263(5) | 2.51              | 133     |  |
| C(11)-(H11)O(8)    | 2-x, 0.5+y, 0.5-z                                            | 3.378(5) | 2.64              | 135     |  |
| C(1G)-(H1G)O(8)    | -0.5+x, y, 0.5-z                                             | 3.332(5) | 2.61              | 130     |  |
| C(1H)-C(1H)O(8)    | -0.5+x, y, 0.5-z                                             | 3.420(5) | 2.64              | 135     |  |
| C(27)-H(27)Cl(2H)  | 1.5-x, $-0.5+y$ , $1-z$                                      | 2.686(5) | 1.84              | 147     |  |
| C(1H)-Cl(3H)Cl(3H) | 1- <i>x</i> , <i>y</i> , 1- <i>z</i>                         | 4.387(5) | 2.90 <sup>a</sup> | 142     |  |

Table S1. Distances (Å) and angles (°) of hydrogen bonds and contacts of 1 and its inclusion compounds with acetone (1a) and chloroform (1b)

<sup>a</sup> Distance between the Cl atoms.

| cone (*)                                                                               | paco1 (+)                                                                                                               | paco2 (Δ)                                                                                                    |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 162.95 (C-15, C-31)<br>157.73 (C-7, C-23)                                              | 162.42 (C-15, C-31)<br>157.72 (C-23)<br>157.10 (C-7)                                                                    | 63.86 (C-31)<br>163.51 (C-15)<br>157.22 (C-7, C-23)                                                          |
| 142.86 (C-12, C-28)<br>-                                                               | 142.45 (C-12, C-28)                                                                                                     | 142.78 (C-28)<br>142.15 (C-12)                                                                               |
| 136.13 (C-10, C-14, C-26,C-30)<br>134.26 (C-2, C-6, C-18, C-22)                        | 135.62 (C-10, C-30)<br>135.37 (C-2, C-6)<br>133.02 (C-14, C-26)<br>132.81 (C-18, C-22)                                  | 137.84 (C-26, C-30)<br>134.98 (C-10, C-14)<br>132.21 (C-2, C-22)<br>130.96 (C-6, C-18)                       |
| 128.99 (C-3, C-5, C-19, C-21)<br>123.56 (C-4, C-20)<br>123.31 (C-11, C-13, C-27, C-29) | 130.78 (C-19, C-21)<br>129.75 (C-3, C-5)<br>124.30 (C-13, C-27)<br>123.76 (C-4)<br>123.37 (C-11, C-29)<br>122.31 (C-20) | 129.36 (C-5, C-19)<br>128.74 (C-3, C-21)<br>125.86 (C-11, C-13)<br>124.30 (C-27, C-29)<br>122.61 (C-4, C-20) |
| 62.17 (C-16, C-32)<br>59.21 (C-8, C-24)                                                | 61.55 (C-24)<br>61.37 (C-16, C-32)<br>61.07 (C-8)                                                                       | 60.27 (C-16)<br>59.70 (C-8, C-24)<br>59.69 (C-32)                                                            |
| 30.51 (C-1, C-9, C-17, C-25)                                                           | 35.57 (C-17, C-25)<br>30.50 (C-1, C-9)                                                                                  | 35.69 (C-9, C-17)<br>30.36 (C-1, C-25)                                                                       |

## **Table S2.** <sup>13</sup>C NMR data of **1** in CDCl<sub>3</sub> at T=295 K

# **Table S3.** <sup>1</sup>H NMR data of **1** in CDCl<sub>3</sub> at T=295 K

| cone (*)                                                                                                                                            | paco1 (+)                                                                                                                                                                                                                                                                   | paco2 (Δ)                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.44 (s, 4H, H-11, H-13, H-27, H-29)<br>6.89 (d, <sup>3</sup> J=7.5 Hz, 4H, H-3, H-5, H-19, H-21)<br>6.80 (t, <sup>3</sup> J=7.5 Hz, 2H, H-4, H-20) | 7.82 (d, <sup>4</sup> J=1.4 Hz, 2H, H-13, H-27)<br>7.27 (d, <sup>3</sup> J=7.4 Hz, 2H, H-19, H-21)<br>7.19 (s, br, 2H, H-11, H-29<br>7.14 (d, <sup>3</sup> J=7.4 Hz, 2H, H-3, H-5)<br>6.97 (t, <sup>3</sup> J=7.4 Hz, 1H, H-4)<br>6.96 (t, <sup>3</sup> J=7.4 Hz, 1H, H-20) | 8.20 (s, br, 2H, H-11, H-13)<br>8.01 (s,br, 2H, H-27, H-29)<br>6.93 (d, <sup>3</sup> J=7.4 Hz, 2H, H-5, H-19)<br>6.55 (t, <sup>3</sup> J=7.4 Hz, 2H, H-4, H-20)<br>6.42 (d, <sup>3</sup> J=7.4Hz, 2H, H-3, H-21) |
| 4.38 (d, <sup>2</sup> J=13.5 Hz, 4H, H-1a, H-9a, H-17a, H-25a)<br>3.29 (d, <sup>2</sup> J=13.5 Hz, 4H, H-1b, H-9b, H-17b, H-25b)                    | 4.06 (d, <sup>2</sup> J=13.9 Hz,2H,H-1a, H-9a)<br>3.75 (m, 4H, H-17a,b, H-25a,b)<br>3.19 (d, <sup>2</sup> J=14.0 Hz, 2H, H-1b, H-9b)<br>-                                                                                                                                   | 4.07 (d, <sup>2</sup> J=13.6 Hz, 2H, H-1a, H-25a)<br>3.78 (m, br, 2H, H-9a, H-17a)<br>3.68 (m, br, 2H, H-9b, H-17b)<br>3.24 (d, <sup>2</sup> J=13.6 Hz, 2H, H-1b, H-25b)                                         |
| 3.86 (s, 6H, H-16, H-32)<br>3.82 (s, 6H, H-8, H-24)                                                                                                 | 3.83 (s, 3H, H-24)<br>3.74 (s, 6H, H-16, H-32)<br>3.73 (s, 3H, H-8)                                                                                                                                                                                                         | 3.70 (s, br, 3H, H-32)<br>3.13 (s, br, 3H, H-16)<br>2.93 (s, br, 6H, H-8, H-24)                                                                                                                                  |

### Table S4. Calculation of the conformer distribution of 1

| Conformer      | Atoms              | Integral |   | Number of atoms | Weighted integral |       | Ratio |
|----------------|--------------------|----------|---|-----------------|-------------------|-------|-------|
| cone           | 11* (5*, 19*, 21*) | 1.242    | : | 4               | =                 | 0.311 | 0.20  |
| partial cone 1 | 13+ (27+)          | 1.348    | : | 2               | =                 | 0.674 | 0.43  |
| partial cone 2 | 27Δ (29Δ)          | 1.132    | : | 2               | =                 | 0.566 | 0.37  |
|                |                    |          |   |                 |                   | 1.551 |       |

#### Determination of the conformer distribution of 1 in solution by NMR spectroscopy

(discussed here for the solution of 1 in  $CDCl_3$  at T = 295 K as an example)



**Fig. S8.** Assignment of the non-equivalent aromatic protons in the three conformers of **1** with the respective numbering of H atoms. The dotted lines symbolize mirror planes through the respective molecule.

As shown in Fig. S8, the three conformers of 1 differ in the number of non-equivalent protons. For our purposes we focused on the aromatic protons in *meta* position to the OMe groups. By using the respective NMR shifts, coupling constants and appropriate 2D NMR experiments (Fig. S9 - S11), we were able to fully assign the conformers. In order to calculate the conformer ratio, we used the well separated signals of H atoms 11\* (5\*, 19\*, 21\*), 13+ (27+) and 27\Delta (29\Delta), each neighboring the nitro group (Table S4).



**Fig. S9.** Part of the COSY spectrum of **1** in CDCl<sub>3</sub> at 295 K. (Conformer assignment: cone = \*, partial cone 1 = +, partial cone  $2 = \Delta$ )



**Fig. S10.** Part of the HSQC spectrum of **1** in CDCl<sub>3</sub> at 295 K. (Conformer assignment: cone = \*, partial cone 1 = +, partial cone  $2 = \Delta$ )



**Fig. S11.** Part of the <sup>1</sup>H NMR spectrum of **1** in CDCl<sub>3</sub> at T = 295 K. The integrals used for calculating the conformer ratio are framed. (Conformer assignment: cone = \*, partial cone 1 = +, partial cone 2 =  $\Delta$ )