Constructing molecular polygons using halogen bonding and bifurcated N-oxides

Christer B. Aakeröy,*^a Tharanga K. Wijethunga^a and John Desper^a

Department of Chemistry, Kansas State University, Manhattan, KS 66506

aakeroy@ksu.edu

Supplementary Information

Table of contents

- S.2 Experimental details: Synthesis of halogen-bond donors
- S.6 Experimental details: Synthesis of co-crystals
- S.12 Experimental details: X-ray crystallography
- S.14 CSD search
- S.15 NMR data

General experimental details

A1 - A3 were prepared using a previously reported method¹. The method was modified in order to get both mono (A1 - A3) and *bis* (A7 - A9) products at once. A4 - A6 were purchased from Aldrich chemicals, A10 was purchased from Acros Organics, D1, D2, D3 were purchased from Matrix Scientific and D4 was purchased from TCI America. All these chemicals were used without further purification.

The determinations of melting points were carried out on Fisher-Johns melting point apparatus and are uncorrected. ¹H NMR spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl₃ or D6-DMSO. Infrared spectroscopy was carried out on a Nicolet 380 FT-IR.

Synthesis of N-oxides

Synthesis of A1 and A7

A solution of 30% hydrogen peroxide (2.84g, 0.084 mol) in 20 mL of acetic acid was added dropwise using a drop funnel over a period of 2.5 hours to a solution of pyrazine (1.00g, 0.013 mol) in 15 mL of acetic acid at 70-80°C. Refluxing was continued for about 24 hours until the TLC confirmed the presence of two products. Acetic acid was removed on a rotary evaporator, and then 10 mL of water was added followed by evaporation. The residue was dissolved in 50 mL of hot chloroform and dried with a mixture of sodium sulfate and sodium carbonate and the solvent was removed on a rotary evaporator. The residue was chromatographed on silica with

variant ratio mixtures of chloroform-methanol as the eluant. A1 and A7 were isolated as off white solids. A1 - (0.48g, 77%); m.p.: $110-113^{0}$ C (Lit. m.p.: $113-115^{0}$ C)¹; ¹H NMR (δ H; 400 MHz, CDCl₃): 8.09 (d, 2H), 8.45 (d, 2H). A7 - (0.37g, 50%). m.p.: > 300^{0} C; ¹H NMR (δ H; 400 MHz, DMSO-d₆): 8.27 (s, 4H).

Synthesis of A2 and A8

A solution of 30% hydrogen peroxide (2.84g, 0.084 mol) in 20 mL of acetic acid was added dropwise using a drop funnel over a period of 2.5 hours to a solution of tetramethylpyrazine (1.77g, 0.013 mol) in 15 mL of acetic acid at 70-80°C. Refluxing was continued for about 24 hours until the TLC confirmed the presence of two products. Acetic acid was removed using a rotary evaporator, 10 mL of water was added followed by evaporation. The residue was dissolved in 50 mL of hot chloroform and dried with a mixture of sodium sulfate and sodium carbonate and the solvent removed on a rotary evaporator. The residue was chromatographed on silica with variant ratio mixtures of chloroform-methanol as the eluant. A2 was isolated as a off white solid and A8 was isolated as pure white solid. A2 - (0.65g, 66%), m.p.: 98-100⁰C (Lit. m.p.: 113-115⁰C)¹; ¹H NMR (δ H; 400 MHz, CDCl₃): 2.45 (d, 6H), 2.50 (d, 6H). A8 - (0.58g, 53%), m.p.: 220 - 222⁰C; ¹H NMR (δ H; 400 MHz, CDCl₃): 2.56 (s, 12H).

Synthesis of A3 and A9

A mixture of 4,4'-Bipyridine (2.00g, 12.82 mmol), 30% hydrogen peroxide (2.66g, 78 mmol) and glacial acetic acid (25 mL) was stirred in a round bottom flask for 24 hours at 70° C. Reaction was monitored with TLC and after completion, reaction mixture was cooled to room temperature and the solvent was removed via a rotary evaporator and diluted with 20 mL water. The solution was basified with excess sodium carbonate (2g) and extracted with chloroform (3 x 50 mL). The organic layers were combined and then concentrated under reduced pressure using a rotary evaporator. Mixture was further purified via column chromatography with variant mixtures of ethyl acetate-methanol. **A3** and **A9** were isolated as off white solids. **A3** - (0.78g, 70%); m.p.: 170-172°C (Lit. m.p.: 170-171°C)¹; ¹H NMR (δ H; 400 MHz, CDCl₃): 8.74 (d, 2H), 8.73 (d, 2H), 7.55 (d, 2H), 7.53 (d, 2H); **A9** - (0.43g, 34%); m.p.: 97-99°C; ¹H NMR (δ H; 400 MHz, CDCl₃): 8.74 (d, 4H), 7.53 (d, 4H).

Halogen bond donors

Synthesis of co-crystals

Grinding experiments

A1-A10 were subjected to grinding experiments with four donors (**D1-D4**). For grinding, 1:1 stoichiometric amounts of acceptors **A1 - A4** and halogen bond donors (**D1-D4**), were mixed together and was grinded using a drop of methanol for several minutes. After the solvent was completely evaporated the IR spectra were recorded. Successful interactions between the acceptor and donor were identified using the specific shifts of the peaks of halogen bond donors, Table S1.

	IR bar	nds (cm ⁻¹)		
Mixture	Halogen bond	Grounded Mixture	Shifts ∆cm ⁻¹	Result
	donors			
	1489	1486	-3	
A1:D1	1438	1430	-8	Co-crystal
	813	811	-2	
	1498	1500	+2	
A1:D2	1459	1461	+2	No co-crystal
	801	802	+1	
	1563	1560	-3	
A1:D3	1403	1400	-3	Co-crystal
	1049	1045	-4	
	1484			
A1:D4	1446	No D4 present	-	No co-crystal
	893			
	1489	1487	-2	
A2:D1	1438	1434	-4	Co-crystal
	813	810	-3	
	1498	1498	-	
A2:D2	1459	1458	-1	No co-crystal
	801	801	-	
	1563	1561	-2	
A2:D3	1403	1400	-3	Co-crystal
	1049	1045	-4	
	1484	1484	-	
A2:D4	1446	1447	+1	No co-crystal
	893	893	-	
	1489	1480	-9	
A3:D1	1438	1428	-10	Co-crystal
	813	809	-4	
	1498			
A3:D2	1459	No D2 present	-	No co-crystal
	801	-		-
A 2.D2	1563	1561	-2	Co. orrestal
A3:D3	1403	1394	-9	Co-crystai

Table S1 : IR analysis of grinding experiments

	1049	1038	-11	
	1484	1484	-	
A3:D4	1446	1448	-2	No co-crystal
	893	895	-2	, , , , , , , , , , , , , , , , , , ,
	1489			
A4:D1	1438	No D1 present	-	No co-crystal
	813	r r		, , , , , , , , , , , , , , , , , , ,
	1498			
A4:D2	1459	No D2 present	-	No co-crystal
	801	P		
	1563	1560	-3	
A4:D3	1403	1397	-6	Co-crystal
	1049	1043	-6	
	1484	1010	<u> </u>	
A4·D4	1446	No D4 present	_	No co-crystal
	893	rio Di present		
	1489	1488	-1	
45·D1	1438	1436	-1	No co-crystal
AS.DI	813	812	-1	NO CO-CI ystai
	1408	1408	-1	
45.D2	1498	1457	- 2	No ao arvetal
AS:D2	14 <i>33</i> 801	800	-2	No co-ci ystai
	1562	1560	-1	
45.D2	1505	1300	-5	Co. amustal
A5:D5	1405	1026	-0	Co-crystar
	1049	1030	-13	
45.04	1484			
A5:D4	1446	No D4 present	-	No co-crystal
	895	1401	0	
	1489	1481	-8	0 1
A6:D1	1438	1429	-9	Co-crystal
	813	811	-2	
	1498			
A6:D2	1459	No D2 present	-	No co-crystal
	801	4.7.00		
	1563	1560	-3	
A6:D3	1403	1399	-4	Co-crystal
	1049	1044	-5	
	1484	1482	-2	
A6:D4	1446	1445	-1	No co-crystal
	893	891	-2	
	1489			
A7:D1	1438	No D1 present	_	No co-crystal
	813			
	1498	1500	+2	
A7:D2	1459	1458	-1	No co-crystal
	801	799	+2	
	1563	1561	-2	
A7:D3	1403	1401	-2	No co-crystal
	1049	1048	-1	
	1484	1482	-2	
A7:D4	1446	1445	-1	No co-crystal
	893	895	+2	-
	1489	1484	-5	
A8:D1	1438	1434	-4	Co-crystal
	813	811	-2	5
			•	

	1498			
A8:D2	1459	No D2 present	-	No co-crystal
	801			
	1563	1561	-2	
A8:D3	1403	1400	-3	Co-crystal
	1049	1046	-3	
	1484			
A8:D4	1446	No D4 present	-	No co-crystal
	893	1		
	1489	1480	-9	
A9:D1	1438	1429	-9	Co-crystal
	813	803	-10	-
	1498			
A9:D2	1459	No D2 present	-	No co-crystal
	801	1		2
	1563	1561	-2	
A9:D3	1403	1394	-7	Co-crystal
	1049	1038	-9	2
	1484	1483	-1	
A9:D4	1446	1445	-1	No co-crystal
	893	893	-	-
	1489			
A10:D1	1438	No D1 present	-	No co-crystal
	813	_		-
	1498			
A10:D2	1459	No D2 present	-	No co-crystal
	801	1		2
	1563	1560	-3	
A10:D3	1403	1399	-4	Co-crystal
	1049	1048	-1	-
	1484	1484	-	
A10:D4	1446	1445	-1	No co-crystal
	893	891	-2	-

Solvent experiments

The solid ground mixtures were dissolved in 2ml of methanol and kept in a slightly open vial for the single crystal formation. Once the crystals are formed they were analyzed using IR spectroscopy and melting point analysis was done. Table S2 includes the melting point results. The IR results were pretty much the same as obtained from grinding experiments.

		C ₆ F ₄ I ₂ (1,2) (D1)	C ₆ F ₃ I ₃ (1,3,5) (D3)
		49-50	148.5
Pyrazine mono-N-oxide (A1)	110-113	61-63	122-124
Tetramethyl pyrazine mono-N-oxide (A2)	98-100	118-120	155-157
4,4'-bipyridine mono-N-oxide (A3)	170-172	183-185	205-208
Pyridine N-oxide (A4)	65-66	-	210-212
4-picoline N-oxide (A5)	182	-	165-167
3-picoline N-oxide (A6)	38-40	120-123	140-143
Pyrazine bis-N-oxide (A7)	>300	-	-
Tetramethyl pyrazine bis-N-oxide (A8)	220-222	118-120	153-155
4,4'-bipyridine bis-N-oxide (A9)	97-99	-	-
2,2'-bipyridine bis-N-oxide (A10)	296 - 298	69-74	-

Table S2: melting point analysis of co-crystals

All melting points are reported in ⁰C.

X-Ray crystallography

Crystallographic data were obtained for the five co-crystals, Table S3-S4.

	A8:D3	A4:D3	A8:D1	A5:D1	A6:D1
Formula moiety	$(C_8H_{12}N_2O_2)$	(C_5H_5NO)	$(C_8H_{12}N_2O_2)_2$	(C_6H_7NO)	(C_6H_7NO)
	$(C_6F_3I_3)_2$	$(C_6F_3I_3)$	$(C_6F_4I_2)_4$	$(C_6F_4I_2)$	$(C_6 F_4 I_2)$
Empirical formula	$C_{20}H_{12}F_6I_6N_2O_2$	$C_{11}H_5F_3I_3NO$	$C_{40}H_{24}F_{16}I_8N_4O_4$	$C_{12}H_7F_4I_2NO$	$C_{12}H_7F_4I_2NO$
Molecular weight	1187.72	604.86	1943.83	510.99	510.99
Color, Habit	colourless prism	colourless plate	colourless cube	colourless prism	colourless prism
Crystal size, mm ³	0.32 x 0.24 x 0.14	0.44 x 0.34 x 0.18	0.26 x 0.24 x 0.22	0.42 x 0.28 x 0.16	0.34 x 0.24 x 0.20
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group, Z	P-1, 1	$P2_1/n, 4$	$P2_1/c, 4$	P-1, 2	$P2_1/c, 4$
a, Å	7.9660(6)	12.4824(12)	14.1359(14)	7.9400(5)	7.8713(9)
b, Å	9.2821(7)	7.3041(7)	15.1116(15)	8.5688(6)	23.203(3)
c, Å	10.1097(8)	15.4872(16)	24.361(3)	11.5503(8)	7.8169(9)
α, °	100.812(3)			89.243(2)	
β,°	106.262(2)	97.536(3)	105.927(3)	83.738(2)	92.019(4)
γ, °	95.408(3)			65.570(2)	
Volume, Å ³	696.28(9)	1399.8(2)	5004.2(9)	710.77(8)	1426.8(3)
Density, g/cm ³	2.833	2.870	2.580	2.388	2.379
Temperature, °K	120(2)	120(2)	120(2)	120(2)	120(2)
X-ray wavelength	0.71073	0.71073	0.71073	0.71073	0.71073
μ, mm ⁻¹	6.755	6.723	5.064	4.463	4.447
Θ_{\min} , °	2.15	2.25	1.60	1.77	1.76
Θ_{\max} , °	33.13	32.54	33.14	32.57	32.66
Reflections					
collected	18582	13950	81993	11235	16697
independent	4468	4568	18382	4521	5006
observed	4255	4343	16534	4212	4805
Absorption corr	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
trans min / max	0.2211 / 0.4515	0.1559 / 0.3775	0.3527 / 0.4021	0.2558 / 0.5354	0.3132 / 0.4700
Threshold expression	>2o(I)	>2 $\sigma(I)$	>2o(I)	>2o(I)	>2o(I)
R ₁ (observed)	0.0204	0.0249	0.0341	0.0288	0.0221
wR_2 (all)	0.0530	0.0586	0.0816	0.0768	0.0505
S	1.133	1.210	1.025	1.089	1.186
$\Delta \rho \max / \min$	1.535 / -0.912	0.854 / -1.792	7.622 / -6.171	2.286 / -0.812	0.704 / -0.679

Table S3: Crystallographic data

Table S4: Halogen bonding geometries

Co-crystal	O…I (Å)	$\mathbf{N}\textbf{-}\mathbf{O}\cdots\mathbf{I}\left(^{0}\right)$
A4:D3	2.7413 (0.0019)	105.17 (0.14)
A5:D1	2.8333 (0.0021)	122.02 (0.15)
A8:D1	3.1570 (0.0022)	110.78 (0.16)
	2.9183 (0.0022)	99.57 (0.15)
	2.8538 (0.0023)	111.33 (0.16)
	2.8703 (0.0023)	102.21 (0.16)
A6:D1	2.7729 (0.0017)	108.18 (0.12)
A8:D3	2.8331 (0.0016)	134.23 (0.14)

X-ray data were collected on a Bruker SMART APEX II CCD diffractometer at 120 K using, a fine-focus molybdenum Kα tube. Data were collected using APEX2^(b) software. Initial cell constants were found by small widely separated "matrix" runs. Scan speed and scan width were chosen based on scattering power and peak rocking curves. Unit cell constants and orientation matrix were improved by least-squares refinement of reflections thresholded from the entire dataset. Integration was performed with SAINT,^(c) using this improved unit cell as a starting point. Precise unit cell constants were calculated in SAINT from the final merged dataset. Lorenz and polarization corrections were applied. Laué symmetry, space group, and unit cell contents were found with XPREP. Data were reduced with SHELXTL.^(d) The structures were solved in all cases by direct methods without incident. All hydrogen atoms were assigned to idealized positions and were allowed to ride. Heavy atoms were refined with anisotropic thermal parameters. Absorption correction was carried out on all datasets.

(a) SMART v5.060, © 1997 - 1999, Bruker Analytical X-ray Systems, Madison, WI.

- (b) APEX2 v2.2.0 © 2005 2007, Bruker AXS, Madison, WI.
- (c) SAINT v7.46a, © 1997 2007, Bruker AXS, Madison, WI.
- (d) SHELXTL v6.10, © 2001, Bruker AXS, Madison, WI.

CSD analysis

CSD analysis was done using the conquest version 1.15 and the CSD version 5.34 (November 2012).

I--O halogen bond analysis

Search criteria was for I---O non bonded interactions with a defined intermolecular bond distance shorter than sum of van der waals radii of two atoms. Structures were filtered with the filters of not disordered, no errors, not polymeric, no ions, no powder structures. A total of 814 hits were found with I--O halogen bonding. Among those structures only 26 are reported as bifurcated bonds with following CSD codes.

GEHYEZ, AHORIZ, BACDEQ, BEBMEB, CAHZUI, CAMSUF, CIOBEN, DAJTUD, DUWLUD, ETELOF, FAVBEJ, GULYOB, IFORAM, INUZUM, KAFREO, KOVGEH, MASVUZ, MTIXTP, NACSIU, RIMXEQ, RUWRUX, ULOKIP, WIPBUS, XORYIM, ZAVFOR, ZEMKUX.

N-oxide halogen bonding

Search criteria was to find N-X intermolecular interactions where X is any halogen and the length of interaction to be less than the sum of van der waals radii of two atoms. All of the above filters were also used. There are only 29 structures in CSD which shows halogen bonding of N-oxides with any of halogen bond donors and none of them are bifurcated. The CSD codes for the 29 structures are as follow.

AFECUJ, AFECUJ01, BREMIN, COJJOB, DIXVUB, EHESIT, HERBAH, HUFTEH, IBZFRO, IHUNAB, KOYPOD01, MBODZO10, MEXRAI, OCOMUO, OCOMUO01, OCOMUO02, OCOMUO03, OCOMUO04, OCOMUO05, OQOYOJ, OQUJIU, SAHDOV, SILNIL, TAKBAJ, XIHCOG, XIMVAR, XIVWOO, YISZUV, YOFXEX

NMR data

¹ S. Forbes, *Hydrogen bonded driven supramolecular chemistry for modulating physical properties of pharmaceutical compounds*, 2010, Ph.D. thesis, Kansas State University