Supplementary Information

Exploring coral biomineralization in gelling environments by means of the counter diffusion system

M. Sancho-Tomás^a, S. Fermani^b, S. Goffredo^c, Z. Dubinsky^d, J.M. García-Ruiz^a, J. Gómez- Morales^{*a} and G. Falini^{*b}

^a Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR). Avda. Las Palmeras, nº 4. E-18100 Armilla, Spain.

^b Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum Università di Bologna, via Selmi 2, I-40126 Bologna, Italy.

^c Marine Science Group, Department of Biological, Geological and Environmental Sciences, Section of Biology, Alma Mater Studiorum University of Bologna, Via Selmi 3, 40126 Bologna, Italy.

^d The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

*Corresponding authors: Giuseppe Falini (giuseppe.falini@unibo.it), Jaime Gómez-Morales (jaime@lec.csic.es)

Figure S1: Optical microscope images of crystals	pag. S2
Figure S2: XRD patterns of calcium carbonate precipitates	pag. S3
Figure S3: FTIR spectra of calcium carbonate precipitates	pag. S4
Figure S4: Low-magnification SEM pictures of calcium carbonate precipitates	pag. S5

Figure S1. Optical microscope images of crystals. The first column corresponds with the agarose viscous sol experiments; the second column with the agarose gel experiments and the third column with the agarose viscous sol adding Mg^{2+} into the cation reservoir. (A-C) Precipitates in the absence of additives; (D-F) in the presence of *B. europaea* at concentration equal to *c* and (G-I) to 5*c*; (J-L) in the presence of *L. pruvoti* at concentration equal to *c* and (M-O) to 5*c*. Scale bars: 200 µm.

Figure S2. XRD patterns of calcium carbonate precipitates. The upper-figure corresponds with the high viscous sol experiments, the medium-figure with the gel experiments and the low-figure with the high viscous sol experiments adding Mg^{2+} into the cation reservoir. The precipitates were obtained in the absence (A) and in the presence of organic macromolecules from *B. europaea*, at concentrations equal to *c* (B) and to 5c (C), and from *L. pruvoti*, at concentrations equal to *c* (D) and to 5c (E).

Figure S3. FTIR spectra of calcium carbonate precipitated in a high viscous sol adding Mg^{2+} into the cation reservoir. The precipitates were obtained in the absence (A) and in the presence of organic macromolecules from *B. europaea*, at concentrations equal to *c* (B) and to 5*c* (C), and from *L. pruvoti*, at concentrations equal to *c* (D) and to 5*c* (E).

Figure S4. Low-magnification SEM images of calcium carbonate precipitates. The first column corresponds with the agarose viscous sol experiments; the second column with the agarose gel experiments and the third column with the agarose viscous sol adding Mg^{2+} into the cation reservoir. (A-C) Precipitates in the absence of additives; (D-F) in the presence of *B. europaea* at concentrations equal to *c* and (G-I) to 5*c*; (J-L) in the presence of *L. pruvoti* at concentrations equal to *c* and (M-O) to 5*c*.