Supporting information of

## $(AEDPH_3) \cdot (8-OQH) \cdot (H_2O)$ : A yellow supramolecular plaster with ammonia adsorption and ammonia-induced discoloration properties

Di Tian,<sup>a</sup> Juan Xiong,<sup>a</sup> Xi-chao Liang,<sup>a</sup> Jing Deng,<sup>b</sup> Liang-jie Yuan,<sup>\*a</sup> Shuo-ping Chen,<sup>\*b</sup>

<sup>a</sup> College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. \*Corresponding author. E-mail: ljyuan@whu.edu.cn. Tel: +86-27-6875-2800

<sup>b</sup> Key Lab of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, College of Materials Science and Engineering, Guangxi Scientific Experiment Center of Mining, Metallurgy and Environment, Guilin University of technology, Guilin 541004, P. R. China. \*Corresponding author. E-mail: chenshuoping\_777@163.com. Tel: +86-773-5896290

List:

Figure S-1. The schematic diagram of the color change between neutral 8-OQ molecule (left) and protonated 8-OQH<sup>+</sup> cation (right)..

Figure S-2. PXRD pattern of the plaster **1** and PXRD pattern of compound **1** which is calculated by the single crystal data.

Figure S-3. The TG (black) and DSC (red) curves of plaster 1.

Figure S-4. IR spectrum of plaster 1.

Figure S-5. <sup>1</sup>H NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster **1** and ammonia.

Figure S-6. <sup>13</sup>C NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster **1** and ammonia.

Table S-7. Hydrogen bonds of plaster 1 (Å and °).

**Figure S-1.** The schematic diagram of the color change between neutral 8-OQ molecule (left) and protonated 8-OQH<sup>+</sup> cation (right).



**Figure S-2.** PXRD pattern of the plaster **1** and PXRD pattern of compound **1** which is calculated by the single crystal data.



**Figure S-3.** The TG (black) and DSC (red) curves of plaster **1**. The plaster can be stable up to 120 °C in nitrogen. Then, it decomposes until 250 °C, attributed to the release of water molecules and the decomposition of 8-OQH<sup>+</sup> ions. The weight loss occurring between 244°C and 800 °C corresponds to the decomposition of AEDPH<sub>3</sub><sup>-</sup> ions. The final product in 800 °C is probably assumed to be 0.5 (P<sub>2</sub>O<sub>3</sub>+P<sub>2</sub>O<sub>5</sub>), and the observed total weight loss (65.67 %) is similar to the calculated value (65.03%).



Figuire S-4. IR spectrum of plaster 1.



Figure S-5. <sup>1</sup>H NMR spectrum of 8-OQ extracted from the equimolar mixture of plaster 1 and ammonia.







Table S-7. Hydrogen bonds of plaster 1 (Å and  $^{\circ}$ ).

| O(7)-H(7A) $O(2)$ $2.760(11)$ $119.6$ $O(7)$ -H(7B) $O(1)#1$ $2.790(11)$ $178.2$ $O(8)$ -H(8) $O(7)#2$ $2.410(12)$ $177.7$ $O(6)$ -H(6A) $O(5)#3$ $2.549(7)$ $127.5$ $O(3)$ -H(3A) $O(4)#4$ $2.584(8)$ $179.7$ $N(1)$ -H(1C) $O(6)#1$ $2.854(8)$ $144.3$ $N(1)$ -H(1B) $O(4)#5$ $2.839(7)$ $139.2$ $N(1)$ -H(1A) $O(1)#1$ $2.753(8)$ $158.5$ $N(2)$ -H(2) $O(2)$ $2.662(18)$ $141(24)$ $N(2)$ -H(2) $O(8)$ $2.74(2)$ $111(21)$ | Donor-H···Acceptor            | D(Donor…Acceptor)     | <( Donor-H…Acceptor) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|----------------------|
| O(8)-H(8) $O(7)$ #22.410(12)177.7 $O(6)$ -H(6A) $O(5)$ #32.549(7)127.5 $O(3)$ -H(3A) $O(4)$ #42.584(8)179.7 $N(1)$ -H(1C) $O(6)$ #12.854(8)144.3 $N(1)$ -H(1B) $O(4)$ #52.839(7)139.2 $N(1)$ -H(1A) $O(1)$ #12.753(8)158.5 $N(2)$ -H(2) $O(2)$ 2.662(18)141(24)                                                                                                                                                                | O(7)-H(7A)O(2)                | 2.760(11)             | 119.6                |
| O(6)-H(6A)O(5)#32.549(7)127.5O(3)-H(3A)O(4)#42.584(8)179.7N(1)-H(1C)O(6)#12.854(8)144.3N(1)-H(1B)O(4)#52.839(7)139.2N(1)-H(1A)O(1)#12.753(8)158.5N(2)-H(2)O(2)2.662(18)141(24)                                                                                                                                                                                                                                                 | O(7)-H(7B)O(1)#1              | 2.790(11)             | 178.2                |
| O(3)-H(3A)O(4)#42.584(8)179.7N(1)-H(1C)O(6)#12.854(8)144.3N(1)-H(1B)O(4)#52.839(7)139.2N(1)-H(1A)O(1)#12.753(8)158.5N(2)-H(2)O(2)2.662(18)141(24)                                                                                                                                                                                                                                                                              | O(8)-H(8)O(7)#2               | 2.410(12)             | 177.7                |
| N(1)-H(1C)O(6)#12.854(8)144.3N(1)-H(1B)O(4)#52.839(7)139.2N(1)-H(1A)O(1)#12.753(8)158.5N(2)-H(2)O(2)2.662(18)141(24)                                                                                                                                                                                                                                                                                                           | O(6)-H(6A)O(5)#3              | 2.549(7)              | 127.5                |
| N(1)-H(1B)O(4)#52.839(7)139.2N(1)-H(1A)O(1)#12.753(8)158.5N(2)-H(2)O(2)2.662(18)141(24)                                                                                                                                                                                                                                                                                                                                        | O(3)-H(3A)O(4)#4              | 2.584(8)              | 179.7                |
| N(1)-H(1A)O(1)#12.753(8)158.5N(2)-H(2)O(2)2.662(18)141(24)                                                                                                                                                                                                                                                                                                                                                                     | N(1)-H(1C)O(6)#1              | 2.854(8)              | 144.3                |
| N(2)-H(2)O(2) 2.662(18) 141(24)                                                                                                                                                                                                                                                                                                                                                                                                | N(1)-H(1B)O(4)#5              | 2.839(7)              | 139.2                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | N(1)-H(1A)O(1)#1              | 2.753(8)              | 158.5                |
| N(2)-H(2)O(8) 2.74(2) 111(21)                                                                                                                                                                                                                                                                                                                                                                                                  | N(2)-H(2)O(2)                 | 2.662(18)             | 141(24)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | N(2)-H(2)O(8)                 | 2.74(2)               | 111(21)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                | x,-y+1/2,z+1/2; #4 -x,-y+1,-z | z+2; #5 -x,-y+1,-z+1. |                      |