Ba₁₈F₁₈In₈S₂₁ and Ba₉F₁₀In₄S₁₀: New kind of Mixed Anions Compounds with the Novel Low-Dimensional Structure

Zhong-Zhen Luo, ^{*a,b*} Chen-Sheng Lin, ^{*a*} Wei-Long Zhang, ^{*a*} Hao Zhang, ^{*a*} Zhang-Zhen He^{*a*} and Wen-Dan Cheng*^{*a*}

^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing, 100039, P. R. China

*E-mail: cwd@fjirsm.ac.cn (W.-D. Cheng)

Electronic Supplementary Information

Fig. S1 TGA and DTA diagrams of 1 (a) and 2 (b).

Fig. S2 The isosurfaces (iso-value = 0.00034 e/Å^3) of charge distribution at the G point of HVB (a) and LCB (b) of **1**. Black, Ba; red, In; yellow, S; green, F.

Fig. S3 The isosurfaces (iso-value = 0.00053 e/Å^3) of charge distribution at the G point of HVB (a) and LCB (b) of **2**. Black, Ba; red, In; yellow, S; green, F.

Fig. S4 The 1D $[BaIn_8S_{21}]$ covalent region looks like a string of red lanterns in 1. Black, Ba; red, In; yellow, S.

Table S1. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ of 1 and 2.

Atom	Atom x		Ζ	$U_{ m eq}{}^{ m a}$			
$Ba_{18}F_{18}In_8S_{21}$							
Ba(1)	0.1549(1)	0.5548(1)	0.1308(1)	0.010(1)			
Ba(2)	0.3522(1)	0.5539(1)	0.1246(1)	0.009(1)			
Ba(3)	0.6503(1)	0.2502(1)	0.3760(1)	0.009(1)			
Ba(4)	0.2497(1)	0.0406(1)	0.3799(1)	0.010(1)			
Ba(5)	0	0	0.5000	0.054(1)			
Ba(6)	0.2500	0.2500	0.2952(1)	0.017(1)			
In(1)	0.1604(1)	0.1604(1)	0.0737(1)	0.017(1)			
In(2)	0.0744(1)	0.0744(1)	-0.1677(1)	0.012(1)			
In(3)	0.0805(1)	0.0805(1)	0.3144(1)	0.012(1)			

In(4)	0.3435(1)	0.1565(1)	0.0795(1)	0.018(1)
S(1)	0.0819(1)	0.0819(1)	0.1217(3)	0.014(1)
S(2)	0.0779(1)	0.0779(1)	-0.3684(3)	0.015(1)
S(3)	0.1542(1)	0.1542(1)	-0.1222(3)	0.011(1)
S(4)	0.1552(1)	0.1552(1)	0.3824(3)	0.011(1)
S(5)	0.2510(1)	0.1005(2)	0.1361(2)	0.024(1)
S(6)	0.2500	0.2500	0.0506(6)	0.035(2)
S(7)	-0.0183(1)	0.1112(1)	0.3801(2)	0.014(1)
S(8)	-0.0201(1)	0.1202(1)	-0.1238(2)	0.011(1)
F(1)	0.2500	0.7500	0.2500	0.016(3)
F(2)	0.6525(3)	0.1525(3)	0.5000	0.014(2)
F(3)	0.2544(2)	0.5511(3)	0.2464(5)	0.013(1)
F(4)	0.2507(2)	0.5521(3)	0.0088(5)	0.014(1)
F(5)	0.1521(3)	0.6521(3)	0	0.014(2)
F(6)	0.6528(3)	0.1534(3)	0.2501(4)	0.014(1)
F(7)	0.2500	0.7500	0	0.015(3)
		$Ba_9F_{10}In_4S_{10}$		
Ba(1)	0.3689(1)	0.5759(1)	0.2563(1)	0.012(1)
Ba(2)	0.1219(1)	0.5774(1)	0.0037(1)	0.012(1)
Ba(3)	0.1188(1)	0.4243(1)	0.2501(1)	0.012(1)
Ba(4)	0.6284(1)	0.5753(1)	-0.0057(1)	0.012(1)
Ba(5)	-0.1269(1)	0.7500	-0.0008(1)	0.035(1)
In(1)	0.1757(1)	0.7500	0.1973(1)	0.019(1)
In(2)	0.0801(1)	0.7500	-0.2953(1)	0.019(1)
In(3)	0.2940(1)	0.7500	-0.0834(1)	0.048(1)
In(4)	0.4811(1)	0.7500	0.1056(1)	0.054(1)
S(1)	0.3622(3)	0.7500	0.2595(3)	0.017(1)
S(2)	0.1072(2)	0.6419(2)	0.2663(2)	0.023(1)
S(3)	0.3798(2)	0.6476(2)	0.0057(2)	0.025(1)
S(4)	0.1389(2)	0.6376(2)	-0.2377(2)	0.024(1)
S(5)	0.1351(3)	0.7500	-0.4875(3)	0.017(1)

S(6)	0.1217(3)	0.7500	0.0075(3)	0.017(1)
S(7)	0.3858(3)	0.7500	-0.2544(3)	0.019(1)
F(1)	-0.1242(4)	0.6265(3)	-0.0014(4)	0.017(2)
F(2)	0.5030(4)	0.4983(3)	-0.1244(5)	0.013(1)
F(3)	0.4971(4)	0.5003(3)	0.3763(5)	0.015(2)
F(4)	0.7463(4)	0.4974(3)	0.1203(5)	0.014(1)
F(5)	0.2458(4)	0.5026(3)	0.1297(5)	0.015(1)

 ${}^{\rm a}U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized $U_{\rm ij}$ tensor.

	distance	BV		distance	BV	
$Ba_{18}F_{18}In_8S_{21}$						
Ba(1)-F(4)	2.616(6)	0.3162	Ba(6)-S(6)	3.086(7)	0.4256	
Ba(1)-F(6)#1	2.634(6)	0.3012	Ba(6)-S(4)#11	3.158(3)	0.3504	
Ba(1)-F(3)	2.636(6)	0.2995	Ba(6)-S(4)	3.158(3)	0.3504	
Ba(1)-F(5)	2.709(4)	0.2459	Ba(6)-S(3)#19	3.167(3)	0.3420	
Ba(1)-S(7)#2	3.265(3)	0.2624	Ba(6)-S(3)#3	3.167(3)	0.3420	
Ba(1)-S(8)#3	3.280(2)	0.2519	Ba(6)-S(6)#19	3.221(7)	0.2955	
Ba(1)-S(2)#3	3.3869(11)	0.1887		∑BVS=	2.1095	
Ba(1)-S(7)#4	3.403(3)	0.1807	In(1)-S(3)	2.479(4)	0.7249	
	∑BVS=	2.0465	In(1)-S(5)	2.523(3)	0.6436	
Ba(3)-F(6)	2.663(6)	0.2785	In(1)-S(5)#1	2.523(3)	0.6436	
Ba(3)-F(5)#3	2.665(5)	0.2770	In(1)-S(1)	2.527(4)	0.6367	
Ba(3)-F(2)	2.665(4)	0.2770	In(1)-S(6)	2.8105(13)	0.2959	
Ba(3)-F(6)#14	2.669(6)	0.2740		∑BVS=	2.9447	
Ba(3)-F(7)#15	2.699(6)	0.2740	In(2)-S(8)#1	2.383(2)	0.9397	
Ba(3)-F(1)#16	2.7135(6)	0.2429	In(2)-S(8)	2.383(2)	0.9397	
Ba(3)-F(3)#1	2.735(6)	0.2292	In(2)-S(2)	2.534(4)	0.6248	
Ba(3)-F(4)#3	2.740(6)	0.2261	In(2)-S(3)	2.554(4)	0.6248	
	∑BVS=	2.0787		∑BVS=	3.129	
Ba(4)-F(4)#18	2.613(6)	0.3188	F(4)-Ba(1)-F(6)#1	111.4(2)		
Ba(4)-F(3)#11	2.633(6)	0.3020	F(4)-Ba(1)-F(3)	69.63(19)		

Table S2. Selected bond-valence sums, bond lengths (Å) and angles (deg) of 1 and 2.

$B_{2}(1) S(2) #10$	3 160(2)	0.3401	$F(5) B_2(1) S(7) #2$	60 54(11)	
Da(4)-5(8)#19	5.109(2)	0.3401	$\Gamma(3)$ -Da(1)-S(7)#2	09.34(11)	
Ba(4)- $S(4)$	3.279(3)	0.2527	S(7)#2-Ba(1)-S(8)#3	85.02(6)	
Ba(4)-S(3)#19	3.284(3)	0.2493	F(3)-Ba(1)-S(2)#3	112.90(15)	
Ba(4)-S(7)#1	3.321(3)	0.2255	S(3)-In(1)-S(1)	99.34(12)	
Ba(4)-S(5)	3.348(3)	0.2097	S(8)#1-In(2)-S(2)	104.25(7)	
Ba(4)-S(5)#20	3.492(3)	0.1421	S(2)-In(2)-S(3)	100.49(12)	
	∑BVS=	2.0402	S(7)-In(3)-S(4)	107.01(8)	
		Ba	${}_{9}F_{10}In_{4}S_{10}$		
Ba(1)-F(5)	2.631(6)	0.3036	In(1)-S(2)#9	2.417(3)	0.8572
Ba(1)-F(3)	2.647(6)	0.2908	In(1)-S(2)	2.417(3)	0.8572
Ba(1)-F(4)#1	2.660(6)	0.2807	In(1)-S(1)	2.471(4)	0.7408
Ba(1)-F(2)#2	2.718(6)	0.2400	In(1)-S(6)	2.483(4)	0.7172
Ba(1)-F(1)#3	3.237(6)	0.0590		∑BVS=	3.1724
Ba(1)-S(2)#3	3.267(3)	0.2610	In(3)-S(7)	2.442(4)	0.8254
Ba(1)-S(1)	3.3591(7)	0.2034	In(3)-S(6)	2.449(4)	0.8143
Ba(1)-S(3)	3.446(3)	0.1609	In(3)-S(3)#9	2.514(3)	0.6776
Ba(1)-S(2)	3.529(3)	0.1285	In(3)-S(3)	2.514(3)	0.6776
	∑BVS=	1.9279		∑BVS=	2.994
Ba(4)-F(2)	2.631(6)	0.3036	F(5)-Ba(1)-F(3)	114.05(17)	
Ba(4)-F(4)	2.640(6)	0.2963	F(3)-Ba(1)-F(4)#1	72.89(16)	
Ba(4)-F(5)#2	2.682(6)	0.2645	S(3)-Ba(1)-S(2)	85.71(7)	
Ba(4)-F(2)#2	2.724(6)	0.2362	S(4)-Ba(2)-S(3)	79.01(8)	
Ba(4)-F(1)#7	3.262(6)	0.0552	F(4)#1-Ba(3)-S(4)#6	66.91(13)	
Ba(4)-S(2)#3	3.285(3)	0.2486	S(2)-In(1)-S(6)	104.36(9)	
Ba(4)-S(5)#8	3.3701(7)	0.1976	S(4)#9-In(2)-S(5)	101.85(8)	
Ba(4)-S(3)	3.424(3)	0.1707	S(6)-In(3)-S(3)	99.85(9)	
Ba(4)-S(4)#8	3.448(3)	0.1600	S(5)#8-In(4)-S(1)	165.14(16)	
	∑BVS=	1.9327	S(1)-In(4)-S(3)	94.69(9)	

Symmetry transformations used to generate equivalent atoms: