Electronic Supplementary Information

Diverse topologies of seven d¹⁰ coordination polymers constructed from a long ligand and different carboxylates

Hua Wu,*^a Xiao-Li Lü,^b Chun-Long Yang,^a Chang-Xun Dong^a and Mei-Sheng Wu^a
^a Nanjing Agricultural University, College of Science, Department of Chemistry, Nanjing 210095, Jiangsu, China
^b Department of Resource and Environment, Jilin Agricultural University, Changchun 130018, China

* Correspondence authors E-mail: wuhuanjau@163.com (H. Wu) Fax: +86-25-84395255

Fig. S1 (a) The coordination environment of the Zn(II) center in **1**. All H atoms are omitted for clarity. (b) View of 1D polymeric chain of **1**. Symmetry code: $^{#1}$ x-1, y+1, z.

(a)

Fig. S2 (a) The coordination environments of the Zn(II) centers in **2**. (b) A schematic representation of the 5-connected topology of **2**. Symmetry code: $^{#1}$ x-1,y+1,z; $^{#2}$ x,y+1,z-1; $^{#3}$ -x+1,-y,-z+1.

Fig. S3 The coordination environment of the Zn(II) center in **3**. Symmetry code: $^{\#1}$ x, y-1, z; $^{\#2}$ -x+3,-y+1,-z; $^{\#3}$ -x+1,-y,-z+2.

Structure of [Zn₂(btd)₂(HL3)₂]·4H₂O (4)

The structure of **4** contains one Zn(II) center, two half btd ligands, one HL3 anion and two uncoordinated water molecules (Fig. S1a). The Zn(II) center is four-coordinated by two oxygen atoms from two HL3 anions [Zn1-O1 = 1.973(5) and Zn1-O4^{#1} =

1.978(5) Å], and two nitrogen atoms from two btd ligands [Zn1-N1 = 2.048(6) and Zn1-N4 = 2.013(7) Å] in a distorted tetrahedral coordination geometries. The adjacent Zn(II) centers are bridged by HL3 anions to give a 1D chain, and the chains are further linked by btd ligands to yield a wave layer with the HL3 ligand hanged on the both sides of the layer (Fig. S1b). There are two kinds of large windows of $Zn_2(L3)_2(btd)_2$ in the resulting layer, which are composed of two Zn(II) atoms, two L3 anions and two btd ligands with the dimensions of 10.14×19.70 Å² and 10.14×20.25 Å² (based on the Zn…Zn distance) respectively. Further, each net is penetrated by another two adjacent nets to result a 2D \rightarrow 2D interpenetrating framework (Fig. S1c). Interestingly, each sheet is simultaneously interdigitated by one adjacent non-interpenetrated layer which results the 2D \rightarrow 2D \rightarrow 3D entanglement (Fig. S1d).

Fig. S4 (a) The coordination environment of the Zn(II) center in 4. (b) The 2D wave layer in 4. (c) The 2D \rightarrow 2D interpenetrating network. (d) The 2D \rightarrow 2D \rightarrow 3D interdigitated framework. Symmetry code: ^{#1} x+1, y, z; ^{#2} -x, -y+2, -z; ^{#3} -x+1, -y, -z+2.

Fig. S5 The coordination environment of the Zn(II) center in **5**. Symmetry code: ^{#1} -x+1/2, y+1/2, -z+3/2; ^{#2} -x+1, -y+1, -z+1; ^{#3} -x, y, -z+3/2.

Fig. S6 The coordination environment of the Cd(II) center in 6. Symmetry code: ^{#1} x,y-1,z-1; ^{#2} x+1,y,z.

(a)

Fig. S7 (a) The coordination environment of the Cd(II) center in 7, the H atoms and water molecule are omitted for clarity. (b) The 3D superamolecular motif of 7 through strong π - π interaction. Symmetry code: ^{#1} x-1,y,z; ^{#2} -x+1,-y+1,-z+2; ^{#3} x-1,y,z-1; ^{#4} -x+2,-y+1,-z+3.

Fig. S8 Simulated A (red) and measured B (black) PXRD patterns of 1-7.

				_ o _					_ [പ
Table S1.	Selected	Bond 1	Lengths	$ \mathbf{A} $	and .	Angles	deg	for 1	-7. '	aj

Compound 1						
Compound I						
Zn(1)-N(1)	2.017(2)	$Zn(1)-N(6)^{\#1}$	2.016(2)			
Zn(1)-Cl(1)	2.2145(9)	Zn(1)- $Cl(2)$	2.2146(10)			
$N(6)^{\#1}$ -Zn(1)-N(1)	103.66(8)	$N(6)^{\#1}$ -Zn(1)-Cl(1)	103.92(8)			
N(1)-Zn(1)-Cl(1)	110.72(8)	$N(6)^{\#1}$ -Zn(1)-Cl(2)	110.80(7)			
N(1)-Zn(1)-Cl(2)	105.85(8)	Cl(1)-Zn(1)-Cl(2)	120.70(4)			
Compound 2						
$Zn(1)-O(1)^{\#1}$	1.991(2)	Zn(1)-O(8)	1.929(2)			
$Zn(1)-O(9)^{\#1}$	1.956(2)	$Zn(1)-N(6)^{\#2}$	2.002(3)			
Zn(2)-O(5)	1.934(2)	Zn(2)-O(10)	1.9534(19)			
Zn(2)-O(2)	1.961(2)	Zn(2)-N(1)	1.989(3)			
O(8)-Zn(1)-O(9) ^{#1}	118.82(9)	O(8)-Zn(1)-O(1) ^{#1}	101.45(10)			
$O(9)^{\#1}$ -Zn(1)-O(1)^{\#1}	116.05(9)	O(8)-Zn(1)-N(6) ^{#2}	118.90(10)			
$O(9)^{\#1}$ -Zn(1)-N(6) $^{\#2}$	102.87(10)	$O(1)^{\#1}$ -Zn(1)-N(6) ^{#2}	97.27(10)			
O(5)-Zn(2)-O(10)	105.44(9)	O(5)-Zn(2)-O(2)	112.37(9)			

O(10)-Zn(2)-O(2)	113.75(9)	O(5)-Zn(2)-N(1)	115.81(10)
O(10)-Zn(2)-N(1)	107.02(10)	O(2)-Zn(2)-N(1)	102.62(11)
		Compound 3	
Zn(1)-O(1)	1.9971(17)	$Zn(1)-O(4)^{\#1}$	1.988(3)
Zn(1)-O(2)	2.4760(19)	Zn(1)-N(1)	2.014(2)
Zn(1)-N(4)	2.014(2)	$O(4)^{\#1}$ -Zn(1)-O(1)	100.86(9)
$O(4)^{\#1}$ -Zn(1)-N(4)	102.05(10)	O(1)-Zn(1)-N(4)	107.28(8)
$O(4)^{\#1}$ -Zn(1)-N(1)	104.11(9)	O(1)-Zn(1)-N(1)	115.42(8)
N(4)-Zn(1)-N(1)	123.60(9)	$O(4)^{\#1}$ -Zn(1)-O(2)	158.08(6)
O(1)-Zn(1)-O(2)	57.61(10)	N(4)-Zn(1)-O(2)	89.58(9)
N(1)-Zn(1)-O(2)	84.04(9)		
		Compound 4	
Zn(1)-O(1)	1.968(4)	$Zn(1)-O(4)^{\#1}$	1.981(5)
Zn(1)-N(1)	2.056(5)	Zn(1)-N(4)	2.016(6)
O(1)-Zn(1)-O(4) ^{#1}	96.54(18)	O(1)-Zn(1)-N(4)	117.9(2)
$O(4)^{\#1}$ -Zn(1)-N(4)	111.4(2)	O(1)-Zn(1)-N(1)	113.8(2)
$O(4)^{\#1}$ -Zn(1)-N(1)	120.0(2)	N(4)-Zn(1)-N(1)	98.5(2)
		Compound 5	
Zn(1)-O(1)	1.940(3)	$2n(1)-O(3)^{\#1}$	1.968(4)
Zn(1)-N(3)	2.015(5)	Zn(1)-N(4)	2.034(6)
O(1)-Zn(1)-O(3) ^{#1}	106.21(16)	O(1)-Zn(1)-N(3)	118.24(17)
$O(3)^{\#1}$ -Zn(1)-N(3)	117.90(18)	O(1)-Zn(1)-N(4)	96.57(19)
$O(3)^{\#1}$ -Zn(1)-N(4)	109.33(19)	N(3)-Zn(1)-N(4)	106.2(2)
	()	Compound 6	
Cd(1)-O(1)	2.336(2)	Cd(1)-O(2)	2.491(2)
$Cd(1)-O(3)^{\#2}$	2.591(2)	Cd(1)-O(1W)	2.319(2)
$Cd(1)-O(4)^{\#2}$	2.313(2)	Cd(1)-N(1)	2.287(3)
$Cd(1)-N(6)^{\#1}$	2.300(3)	$N(1)-Cd(1)-N(6)^{\#1}$	165.50(11)
$N(1)-Cd(1)-O(4)^{\#2}$	97.72(10)	$N(6)^{\#1}-Cd(1)-O(4)^{\#2}$	89.16(10)
N(1)-Cd(1)-O(1W)	85.66(11)	$N(6)^{\#1}$ -Cd(1)-O(1W)	81.37(11)
$O(4)^{\#2}$ -Cd(1)-O(1W)	144.36(10)	N(1)-Cd(1)-O(1)	90.89(10)
$N(6)^{\#1}$ -Cd(1)-O(1)	102.77(11)	$O(4)^{#2}$ -Cd(1)-O(1)	81.65(7)
O(1W)-Cd(1)-O(1)	133.92(9)	N(1)-Cd(1)-O(2)	94.24(9)
$N(6)^{\#1}$ -Cd(1)-O(2)	90.12(10)	$O(4)^{#2}$ -Cd(1)-O(2)	133.60(7)
O(1W)-Cd(1)-O(2)	81.00(10)	O(1)-Cd(1)-O(2)	53.41(6)
N(1)-Cd(1)-O(3)#2	88.40(9)	N(6)#1-Cd(1)-O(3)#2	85.69(10)
O(4)#2-Cd(1)-O(3)#2	52.53(7)	O(1W)-Cd(1)-O(3)#2	92.35(9)
O(1)-Cd(1)-O(3)#2	133.54(7)	O(2)-Cd(1)-O(3)#2	172.62(6)
() () (-)		Compound 7	
Cd(1)-O(6)	2.272(3)	Cd(1)-O(2)	2.296(4)
$Cd(1)-O(8)^{\#1}$	2.306(4)	$Cd(1)-O(5)^{\#2}$	2.406(4)
$Cd(1)-O(7)^{\#1}$	2.545(3)	Cd(2)-O(1)	2.225(4)
$Cd(2)-O(3)^{\#1}$	2.349(3)	$Cd(2)-O(7)^{\#1}$	2.359(4)
$Cd(2)-O(4)^{\#1}$	2.421(4)	Cd(1)-N(1)	2.266(5)
	(.)		(c)

$Cd(2)-N(9)^{\#3}$	2.302(6)	Cd(2)-N(4)	2.320(5)
N(1)-Cd(1)-O(6)	123.82(14)	N(1)-Cd(1)-O(2)	89.59(15)
O(6)-Cd(1)-O(2)	86.87(15)	$N(1)-Cd(1)-O(8)^{\#1}$	145.16(14)
$O(6)-Cd(1)-O(8)^{\#1}$	90.39(13)	$O(2)-Cd(1)-O(8)^{\#1}$	99.63(14)
$N(1)-Cd(1)-O(5)^{\#2}$	85.00(15)	$O(6)-Cd(1)-O(5)^{\#2}$	101.77(13)
$O(2)-Cd(1)-O(5)^{\#2}$	171.34(14)	$O(8)^{\#1}$ -Cd(1)-O(5) $^{\#2}$	81.23(14)
$N(1)-Cd(1)-O(7)^{\#1}$	96.67(14)	$O(6)-Cd(1)-O(7)^{\#1}$	136.51(13)
$O(2)-Cd(1)-O(7)^{\#1}$	77.45(12)	$O(8)^{\#1}$ -Cd(1)-O(7) $^{\#1}$	53.75(12)
$O(5)^{\#2}$ -Cd(1)-O(7) ^{#1}	96.43(11)	$O(1)-Cd(2)-N(9)^{\#3}$	99.62(19)
O(1)-Cd(2)-N(4)	89.35(17)	$N(9)^{#3}$ -Cd(2)-N(4)	170.94(19)
$O(1)-Cd(2)-O(3)^{\#1}$	141.68(14)	$N(9)^{#3}$ -Cd(2)-O(3) ^{#1}	85.94(19)
$N(4)-Cd(2)-O(3)^{\#1}$	86.17(16)	$O(1)-Cd(2)-O(7)^{\#1}$	110.38(14)
$N(9)^{\#3}$ -Cd(2)-O(7) ^{#1}	90.95(16)	$N(4)-Cd(2)-O(7)^{\#1}$	87.16(15)
$O(3)^{\#1}-Cd(2)-O(7)^{\#1}$	107.38(12)	$O(1)-Cd(2)-O(4)^{\#1}$	86.47(14)
$N(9)^{\#3}$ -Cd(2)-O(4)^{\#1}	95.29(17)	$N(4)-Cd(2)-O(4)^{\#1}$	83.84(15)
$O(3)^{\#1}-Cd(2)-O(4)^{\#1}$	55.21(12)	$O(7)^{\#1}$ -Cd(2)-O(4)^{\#1}	160.82(11)
$O(1)-Cd(2)-C(8)^{\#1}$	113.87(16)	$N(9)^{\#3}$ -Cd(2)-C(8)^{\#1}	92.6(2)
$N(4)-Cd(2)-C(8)^{\#1}$	82.42(17)	$O(3)^{\#1}-Cd(2)-C(8)^{\#1}$	27.83(13)
$O(7)^{\#1}-Cd(2)-C(8)^{\#1}$	134.27(14)	$O(4)^{\#1}$ -Cd(2)-C(8)^{\#1}	27.50(13)

[a] Symmetry operations: for 1: ^{#1} x-1,y+1,z; for 2: ^{#1} x-1,y+1,z ^{#2} x,y+1,z-1; for 3: ^{#1} x,y-1,z; for 4: ^{#1} x+1,y,z; for 5: ^{#1} -x+1/2,y+1/2,-z+3/2; for 6: ^{#1} x,y-1,z-1 #2 x+1,y,z; for 7: ^{#1} x-1,y,z #2 -x+1,-y+1,-z+2 #3 x-1,y,z-1.