Electronic Supplementary Information For:

Controlled Preparation of CdS Nanoparticle Arrays in Amphiphilic Perylene Tetracarboxylic Diimides: Organization, Electron-Transfer and Semiconducting Properties

Jingang Song, ^a Qingwen Tian, ^a Jian Gao, ^a Haixia Wu, ^b Yanli Chen* ^a and Xiyou Li* ^b

^a Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China. ^b Department of Chemistry, Shandong University, Jinan, 250100, China.

Scheme S1. The energy-optimized conformation of **PDI-1** (left) and **PDI-2** (right) obtained from DFT calculation (B3LYP/6-31G(d)).

Fig. S1. π -*A* isotherms of the **PDI-1**(A) and **PDI-2** (C) at the air/CdCl₂ subphase interface with different CdCl₂ concentration after evaporation of CH₂Cl₂ for 3 h; and π -*A* isotherms of the **PDI-1** (B) and **PDI-2** (D) at the air/CdCl₂ subphase interface with different interaction time between the PDI molecules and Cd²⁺ ions in the 5×10⁻⁴ mol L⁻¹ CdCl₂ subphase.

Fig. S2. SEM images of the Langmuir film of the **PDI-1** (top) and **PDI-2** (bottom) on the pure water surface (A and C) and CdCl₂ subphase surface (B and D). The inset of A-D shows the EDS pattern collected from the nanoparticle (cross mark) in the corresponding Langmuir films, respectively.

Fig. S3. Cyclic voltammogram (A and C) and differential pulse voltammogram (B and D) of **PDI-1** and **PDI-2**, respectively, in CH_2Cl_2 containing 0.1 M [NBu₄][ClO₄] at a scan rate of 20 and 10 mV·S⁻¹.

Fig. S4. *I-V* curves of the PDI-1 and PDI-2 LS films.

films	component	2θ / degree	d /nm	hkl or attribution
		5.72	1.55	(001)
PDI-1 LS films	PDI-1	28.94	0.31	π - π interaction
		6.04	1.46	(001)
	PDI-1	21.08	0.42	liquid-like ordered packing of
				long alky chains
		28.94	0.31	π - π interaction
CdS/PDI-1		24.86	0.358	(100)
composite films		26.45	0.357	(002)
	CdS	28.22	0.316	(101)
		43.78	0.207	(110)
		51.70	0.177	(112)
		3.02	2.92	(001)
	PDI-2	6.02	1.47	(002)
PDI-2 LS films		21.32	0.42	liquid-like ordered packing of
				long alky and/or alkyl chains
		28.06	0.31	π - π interaction
		4.20	2.10	(001)
	PDI-2	21.08	0.42	liquid-like ordered packing of
				long alky and/or alkyl chains
		28.02	0.31	π - π interaction
CdS/PDI-2	CdS	24.86	0.358	(100)
composite films		26.45	0.357	(002)
		28.22	0.316	(101)
		43.70	0.207	(110)
		52.04	0.176	(112)

Table S1. The experimental data of X-ray diffraction from **PDI** LS films and CdS/**PDI** composite films.

Table S2. Half-wave redox potentials of **PDI-1** and **PDI-2** (V vs SCE) in CH_2Cl_2 containing 0.1M TBAP and the HOMO, LUMO levels of **PDI**.

Compound	$Oxd_{1}(V)^{b}$	$\operatorname{Red}_{1}(V)^{b}$	$\operatorname{Red}_{2}(V)^{b}$	E _{HOMO} (eV) ^c	E _{HOMO} (eV) ^c	$\triangle E^{o}{}_{1/2}(V)^{a}$
PDI-1	1.52	-0.54	-0.71	-5.96	-3.90	2.05
PDI-2	1.54	-0.53	-0.70	-5.98	-3.95	2.07

^a $\triangle E^{o}_{1/2} = Oxd_1$ - Red₁, i.e. the HOMO-LUMO gap of corresponding molecule.

^b Recorded by DPV.

^c Calculated from empirical formula¹: HOMO = -(Oxd₁+4.44 eV).

 d LUMO = -(Red₁+4.44 eV).

τ/ns	pure LS films	CdS/PDI composite films				
		40 nm	60 nm	80 nm		
PDI-1	2.91	1.20 (88.76%)	1.30 (86.03%)	1.57 (89.87%)		
		11.24 (11.24%)	10.99 (13.97%)	10.10 (10.13%)		
		20 nm	30 nm			
PDI-2	3.50	1.40 (91.98%)	2.50 (82.19%)			
		17.30 (8.02%)	10.20 (17.81%)			

Table S3. The experimental data of fluorescence decay (τ) from **PDI** LS films and CdS/**PDI** composite films.

1. S. Vajiravelu, L. Ramunas, G. J. Vidas, G. Valentas,; J. Vygintas, S. Valiyaveettil. J. Mater. Chem. 2009, **19**, 4268.