Supporting Information

Facile synthesis of MnO₂-Ag hollow microspheres with sheet-like

subunits and their catalytic properties

Dan-Ling Zhou,^a De-Jun Chen,^b Pei-Pei Zhang,^b Fang-Fang Li,^b Jian-Rong Chen,^a Ai-Jun Wang^a*

and Jiu-Ju Feng ^a*

^a College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China

^b College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

**Corresponding author: Tel./Fax: 86-579-82282273; E-mail: <u>ajwang@zjnu.cn</u> (AJW) and <i>E-mail: jjfeng@zjnu.cn (JJF)*

Fig. S1. SEM images of the products prepared at different reaction temperature: room temperature without hydrothermal treatment (A), 100 °C (B), 160 °C (C), and 200 °C (D).

Fig. S2. (A) SEM image and XRD pattern (B) of the products prepared without AgNO₃.

Fig. S3. TEM image of the product obtained at 130 °C for 0.5 h.

Fig. S4. High-magnification TEM image of the product obtained at 130 °C for 2 h.

Fig. S5. SEM images of the products prepared at different reaction time: 1 h (A), 2 h (B), 5 h (C), and 10 h (D).

Fig. S6. SEM images of the products prepared with different amount of urea: 0.024 g (A), 0.144 g (B), 0.48 g (C), and 4.80 g (D).

Fig. S7. SEM images of the products obtained with different molar ratios of Mn^{2+}/Ag^+ :

2:1 (A), 1:1 (B), and 1:3 (C) at 130 °C.

Fig. S8. X–ray diffraction pattern of the product using the molar ratio (Mn^{2+}/Ag^{+}) of 2:1.

Fig. S9. Effects of the applied potentials on the steady-state responses of the MnO_2 -Ag HMs modified CPE in a 25 mM phosphate solution (pH 7.0) containing 1.25 mM H₂O₂.

Fig. S10. Amperometric *i-t* curve of the MnO₂–Ag HMs modified CPE with successive addition of 1.0 mM H_2O_2 , ClO_3^- , UA, and AA, as well as 10 mM glucose, SO_4^{2-} , NO_3^- , CO_3^{2-} , and Cl^- ions in a 25 mM phosphate solution (pH 7.0) at –0.4 V.

Table S1. Comparison of the MnO_2 -Ag HMs sensor with other MnO_2 based H_2O_2

sensors.

Materials	Stability	Linear ranges	Detection	Refs.
			limit/ μM	
MnO ₂ –Ag HMs/CPE	90% (4 weeks)	$1.31 \ \mu M \sim 36.71 \ mM$	1.31	Our work
β –MnO ₂ nanorods	90% (30 days)	$2.45~\mu M \sim 42.85~mM$	2.45	1
Ag-MnO ₂ -MWCNTs	90% (3 days)	$5.0~\mu M \sim 10.4~mM$	1.7	2
MnO ₂ microspheres	89.0% (4 weeks)	$10.0~\mu M\sim 0.15~mM$	2.0	3
MnO ₂ /graphene	90% (4 weeks)	$5~\mu M \sim 0.6~mM$	0.8	4
oxide				
MnO ₂ /carbon fiber	not detected	$12~\mu M \sim 0.26~mM$	5.4	5
MnO ₂ -mesoporous	92% (1 month)	$0.5~\mu M \sim 0.6~mM$	0.07	6
carbon				
MnO ₂ -VACNTs	92% (30 days)	$1.2~\mu M \sim 1.8~mM$	0.8	7

References

1 A.-J. Wang, P.-P. Zhang, Y.-F. Li, J.-J. Feng, W.-J. Dong and X.-Y. Liu, Microchim.

Acta 2011, 175, 31-37.

- 2 Y. Han, J. Zheng and S. Dong, *Electrochim. Acta* 2013, 90, 35-43.
- 3 L. Zhang, Z. Fang, Y. Ni and G. Zhao, Int. J. Electrochem. Sci. 2009, 4, 407-413.

4 L. Li, Z. Du, S. Liu, Q. Hao, Y. Wang, Q. Li and T. Wang, *Talanta* 2010, 82, 1637-1641.

5 S. B. Hocevar, B. Ogorevc, K. Schachl and K. Kalcher, *Electroanalysis* 2004, 16, 1711-1716.

6 L. Luo, F. Li, L. Zhu, Z. Zhang, Y. Ding and D. Deng, Electrochim. Acta 2012, 77,

179-183.

7 B. Xu, M.-L. Ye, Y.-X. Yu and W.-D. Zhang, Anal. Chim. Acta 2010, 674, 20-26.