Electronic Supplementary Information (ESI)

A sildenafil cocrystal based on acetylsalicylic acid exhibits an enhanced intrinsic dissolution rate

Miroslav Žegarac,^a Edislav Lekšić,^a Primož Šket,^{b,c} Janez Plavec,^{b,c} Maja Devčić Bogdanović,^a Dejan-Krešimir Bučar,^{*d} Miljenko Dumić,^e Ernest Meštrović*^a

^c EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia

- 1. Materials
- 2. Crystallographic studies
- 3. Thermal analyses
- 4. Spectroscopic studies
- 5. Intrinsic-dissolution-rate studies
- 6. HPLC analysis
- 7. References

^a PLIVA Croatia, TAPI R&D, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia. E-mail: Ernest.Mestrovic@pliva.com

^b Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia

d Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0A, UK. E-mail: d.bucar@ucl.ac.uk

^e Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia

1. Materials

Sildenafil of 98% purity was obtained from an in-house source and used without further purification. Acetylsalisylic acid (98%, Merck) and 2-propanol were used as received.

2. Crystallographic studies

2.1. Powder X-ray diffraction

X-ray powder diffraction patterns were obtained by using a *Phillips X'Pert Pro* diffractometer equipped with an *X'celerator RTMS* detector using Ni-filtered Cu K_{α} radiation ($\lambda = 1.5406$ Å) generated at 45 kV and 40 mA. The sample (~150 mg) was placed on a circular sample holder (16 mm diameter, PW1811/16, PW1811/00). Data collection was conducted at ambient conditions using the *X'Pert Data Collector* program¹ (v. 2.2h). The scans were performed in the continuous mode (gonio scan axis) in the 3-40° 2θ range with a step size of 0.017° and a step time of 40 s. The acquired data was analysed using the *XPertDataView* program.¹

2.2 Single-crystal X-ray diffraction

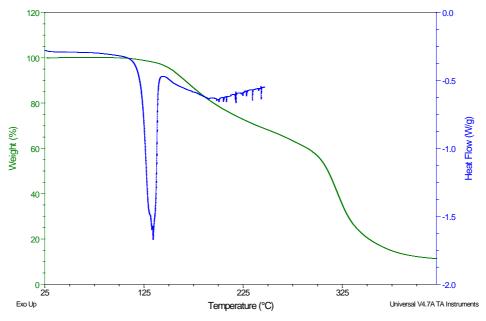
Single crystal diffraction data was collected using a *Nonius KappaCCD* diffractometer (being equipped with a 95mm CCD camera on a κ -goniostat) and monochromated Cu K_{α} radiation ($\lambda = 1.54184$ Å, graded mirrors). The diffraction data of **1** was collected at 293 K.

Data collection, cell refinement and data reduction were performed using $Collect^2$ and HKL Scalepack/Denzo, respectively. The structures were solved by direct methods and refined on F^2 by weighted full-matrix least squares. SHELX⁴ was used to solve and refine the crystal structures. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms belonging to $C(sp^2)$ and $C(sp^3)$ carbon atoms were placed in geometrically idealized positions with isotropic displacement parameters and fixed at 1.2 times of $U_{\rm eq}$ for methylene carbon atoms and 1.5 times Ueq for methyl groups. Hydrogen atoms belonging to O and N atoms were placed in geometrically idealized positions with isotropic displacement parameters and fixed at 1.5 times of $U_{\rm eq}$ of the corresponding atoms.

The investigated single crystal of compound 1 was a small-sized, brittle and poorly diffracting needle. Numerous datasets were collected on single crystals from different batches, whereof the one of the highest quality is reported herein. Attempts to collect a dataset of higher quality at low temperatures failed, as the fine needles tend to crack under the N_2 flow.


3. Thermal analyses

3.1. Thermogravimetric analysis


TGA profiles were generated in range of 25-420 °C using *TA Instruments Hi-Res TGA 2950*. About 10 mg of the sample was placed in an open platinum pan. The mass loss of the sample was determined as a function of temperature. The resulting data were analyzed using the *TA Instruments Universal Analysis 2000* software (v. 4.7A). The TGA thermograms of solids **1** and **2** are shown on Figures S1 and S2, respectively.

3.1. Differential-scanning calorimetry (DSC)

DSC thermograms was acquired in the temperature range of 25–250 °C using a *TA Q1000* instrument. About 2-5 mg of the sample was encapsulated in a pierced Al pan. The same empty pan was used as reference. A nitrogen purge at 50 mL/min was employed. The obtained data was examined using the *TA Instruments Universal Analysis 2000* software (v. 4.7A). The DSC thermograms of solids **1** and **2** are shown on Figures S1 and S2, respectively.

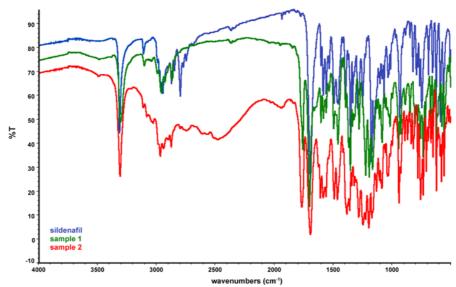
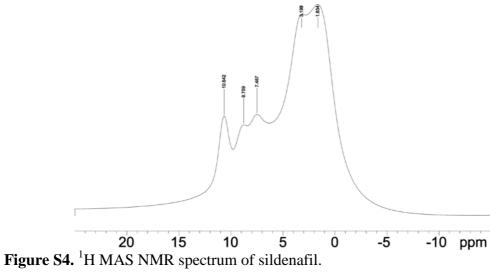
Figure S1. DSC (blue) and TG (green) thermograms of solid **1** ($t_{\text{melting}} = 148.0 \,^{\circ}\text{C}$).

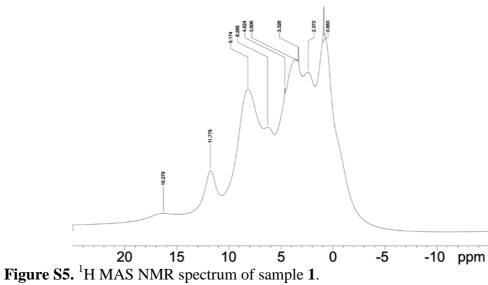
Figure S2. DSC (blue) and TG (green) thermograms of solid **2** ($t_{\text{melting}} = 134.3 \, ^{\circ}\text{C}$).

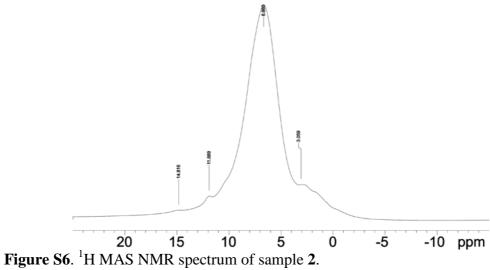
4. Spectroscopic studies

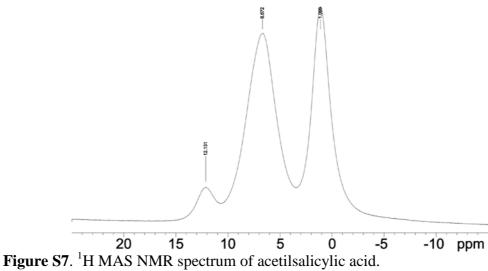
4.1. FT-IR spectroscopy

FT-IR of solids **1** and **2** were recorded on a *Nicolet 6700* spectrophotometer and measured in the range of 4000-400 cm⁻¹ using the KBr-pellet technique (sample concentration: 1 mg in 10 mg of KBr). The data analysis was performed using the *Omnic* program (v. 8.0).


Figure S3. FT-IR spectra of sildenafil (blue), solid 1 (green) and solid 2 (red).


4.1. ¹H, ¹³C and ¹⁵N CP-MAS NMR spectroscopy


The ¹H and ¹³C NMR spectra of samples **1** and **2** were recorded on an *Agilent Technologies* NMR System 600 MHz NMR spectrometer equipped with a 3.2 mm NB Double Resonance HX MAS Solids Probe. The Larmor frequencies of proton and carbon nuclei were 599.62 and 150.77 MHz, respectively. The ¹H MAS NMR spectra were externally referenced using adamantine. The ¹³C CP-MAS NMR spectra were externally referenced using hexamethylbenzene. Samples were spun at the magic angle with 20 kHz during ¹H measurement and with 16 kHz during ¹³C measurement. The ¹H spectra were acquired within 16 scans using a spin echo sequence with a repetition delay of 10 s. The pulse sequence used for acquiring the ¹³C spectra was a standard cross-polarization MAS pulse sequence with high-power proton decoupling during acquisition. The repetition delay in all ¹³C data acquisitions was 5 s and the number of scans was between 500 and 13770, depending on the sample.

The 15 N NMR spectra of solids **1** and **2** were also recorded on an *Agilent Technologies* NMR System 600 MHz NMR spectrometer, which was equipped with a 3.2 mm NB Double Resonance HX MAS Solids Probe. The Larmor frequencies of proton and nitrogen nuclei were 599.62 and 60.77 MHz, respectively. The 15 N CP-MAS NMR spectra were externally referenced using ammonium sulphate (δ -355.7 ppm, as compared to nitromethane at δ 0.0 ppm). The samples were spun at the magic angle with 10 kHz during all 15 N measurement. The pulse sequence used for 15 N data acquisition was a standard cross-polarization MAS pulse sequence with high-power proton decoupling during acquisition. The repetition delay in all 15 N experiments was 5 s and the number of scans was between 4430 and 27400, depending on the sample.

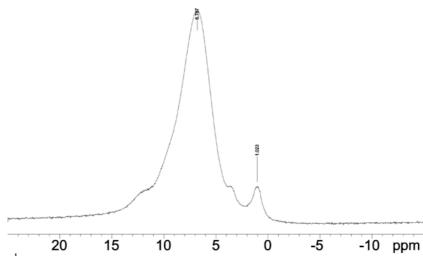
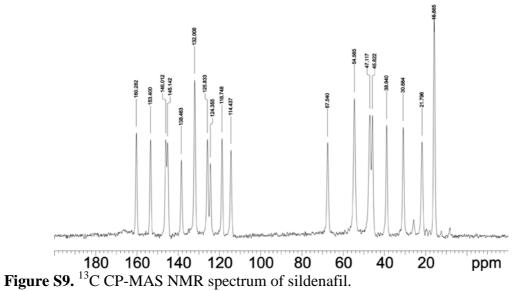
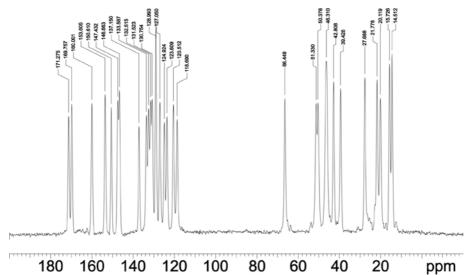




Figure S8. ¹H MAS NMR spectrum of salicylic acid.

Figure S10. ¹³C CP-MAS NMR spectrum of sample **1**.

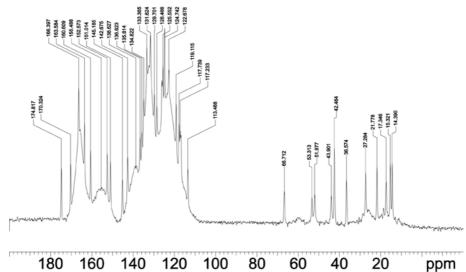
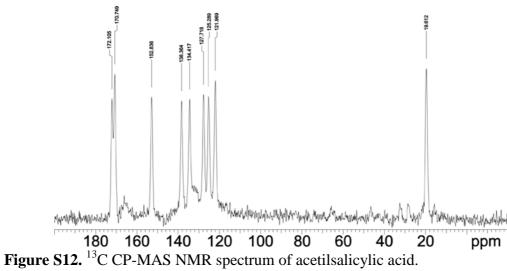
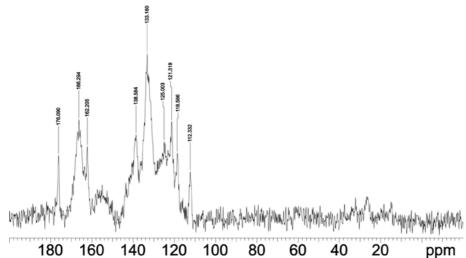
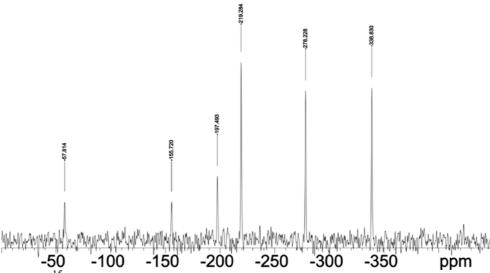




Figure S11. ¹³C CP-MAS NMR spectrum of sample 2.



180 160 140 120 100 80 60 40 Figure S13. ¹³C CP-MAS NMR spectrum of salicylic acid.

Figure S14. ¹⁵N CP-MAS NMR spectrum of sildenafil.

Figure S15. ¹⁵N CP-MAS NMR spectrum of sample **1**.

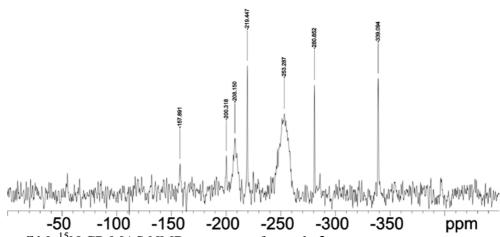


Figure S16. ¹⁵N CP-MAS NMR spectrum of sample 2.

5. Intrinsic dissolution rate studies

Intrinsic dissolution rates were examined on PHARMA TEST dissolution apparatus (*VanKel* intrinsic dissolution apparatus) at 100 rpm. In a typical experiment, 100 mg of the solid sample was pressed into a pellet at 1.5 MT for 1 min. IDRs were examined in three different media, namely degassed water, degassed water with 1.2% NaCl and a pH=1.2 buffer. The volume of the dissolution media was 900 mL. The obtained solutions were collected in five-minute intervals, and analyzed using a *Carry* 50 spectrophotometer at 292 nm.

6. HPLC analyses

The HPLC analysis of compound **2** was performed on an *Agilent* (1100 Series) instrument that was fitted with a *Phenomenex Intersil ODS-3* column (150x4.60mm, 5 μ m particle size). The mobile phase was composed of a KH₂PO₄ buffer (pH=2.3; 65%) and acetonitrile (35%). The components of solid **2** were eluted over 8 min at rate of 1 mL min⁻¹. The column was kept at a temperature of 40°C. The separation of the solid's components was monitored in real time by a *Carry* 50 spectrophotometer at 292 nm.

The composition of solid 2 was determined by calculating retention factors for acetyilsalicylic acid and salicylic acid. A typical HPLC chromatogram for solid 2 is shown in Fig. S17, while the data used to determine the composition of solid 2 is shown in Table S1. and S2.

Table S1. Standard solution of sildenafil, acetylsalicylic acid and salicylic acid used to determine the composition of solid 2 *via* HPLC analyses.

compound	m/mg	V/mL	c/mg mL ⁻¹	area	RF
sildenafil	51.22	50	1.024	4610.06	4500.25
acetylsalicylic acid	53.23	50	1.065	2665.56	2503.81
salicylic acid	50.37	50	1.007	6498.41	6450.67

Table S2. Composition of solid 2, as determined via HPLC analyses.

batch	m/mg	V/mL	c/mg mL ⁻¹	compound	area	RF	assay*/%
1 31.3	21.26	25	1.25	acetylsalicylic acid	794.90	633.69	25.3
	31.30	23		salicylic acid	1556.74	1241.03	19.2
2 26.91	26.01	25	1.08	acetylsalicylic acid	682.65	634.20	25.3
	20.91			salicylic acid	1316.57	1223.13	19.0
3 21.04	21.04	25	0.84	acetylsalicylic acid	499.82	593.89	23.7
	21.04			salicylic acid	1017.29	1208.75	18.7
4 27.98	27.09	25	1.12	acetylsalicylic acid	745.83	666.39	26.6
	21.98			salicylic acid	1240.61	1108.48	17.2
5	25.74	25	1.03	acetylsalicylic acid	627.40	609.36	24.3
				salicylic acid	1318.43	1280.53	19.9

^{*} theoretical w/w%: sildenafil – 59.9%, acetylsalicylic acid – 22.7%, salicylic acid – 17.4%

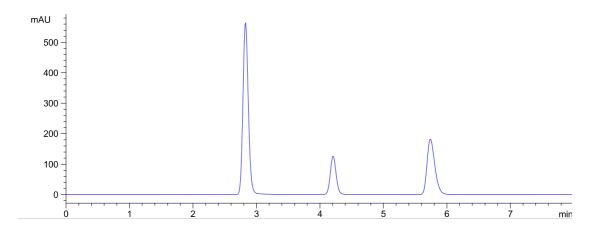


Figure S17. A typical HPLC chromatogram of solid 2.

7. References

- 1. PANalytical B. V., Almelo, The Netherlands, 2006.
- 2. R. W. W. Hooft, Nonius BV, Delft, The Netherlands, 1998.
- 3. Z. Otwinowski, W. Minor in *Methods in Enzymology*, ed. C. W. Carter Jr and R. M. Sweet, 1997, Vol. 276 (*Macromolecular Crystallography*, Part A), pp. 307-326.
- 4. G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.