Supporting Information

Table S1. Selected Bond Length (Å) and Bond Angles (°) of complex 1

Co1-O1	2.0539(19)	Co1-O3	2.1463(9)
Co1-O4	2.2068(12)	Co1-O5	2.0201(8)
Co1-N6	2.148(2)	Co-N7 ^{<i>a</i>}	2.133(2)
Co2-O1	2.3019(19)	Co2-O2	2.1628(17)
Co2-O6	2.0428(11)	Co2-N1	2.178(2)
Co2-N5	2.176(2)	Co2-O8 ^b	2.000 (12)
O1-Co1-O3	100.01(6)	O2-Co2-N1	90.16(7)
O1-Co1-O4	160.10(6)	O2-Co2-N5	87.07(7)
O1-Co1-O5	102.71(6)	O2-Co2-O8 ^b	116.31(6)
O1-Co1-N6	88.16(8)	O6-Co2-N1	91.52(6)
O1-Co1-N7 ^a	91.87(8)	O6-Co2-N5	91.38(6)
O3-Co1-O4	60.16(4)	O6-Co2-O8 ^b	92.78(4)
O3-Co1-O5	157.27(4)	N5-Co2-N1	177.05(8)
O3-Co1-N6	88.27(6)	O3-Co1-N7 ^{<i>a</i>}	90.66(7)
O8 ^b -Co2-N1	87.93(7)	O4-Co1-O5	97.11(3)
O4-Co1-N6	89.44(6)	O8 ^{<i>b</i>} -Co2-N5	92.40(7)
O4-Co1-N7 ^{<i>a</i>}	90.17(7)	Co1-O1-Co2	118.68(8)
O5-Co1-N6	91.74(6)	O5-Co1-N7 ^{<i>a</i>}	89.31(6)
N6-Co1-N7 ^{<i>a</i>}	178.92(8)	O1-Co2-N1	86.31(7)
O1-Co2-O2	57.77(7)	O1-Co2-N5	93.05(7)
O2-Co2-O6	150.90(6)	O1-Co2-O8 ^b	171.69(6)
O1-Co2-O6	93.35(5)		

Symmetry Code: *a* = -x, 1-y, 1-z, *b* = 1-x, 2-y, 1-z.

						6	
Table S2.	Hydrogen	Bonding	Interactions	of Complex	x 2-4	(Å,	°)

Complex	D-HA	D-H	НА	DA	∠D-H…A	
1	O1S-H1SO7	0.8200	1.8800	2.666(2)	161.00	
1	O2S-H2SO4	0.8200	2.0700	2.846(2)	158.00	
	O1W-H1WA O3 ⁱ	0.8500	2.2000	2.636(5)	112.00	
	O1W-H1WB O2 ⁱⁱ	0.8500	2.0700	2.779(4)	140.00	
	O1W-H1WBO1 ⁱⁱⁱ	0.8500	2.2800	2.958(5)	137.00	
2	O2W-H2WAO4 ⁱ	0.8600	1.8800	2.673(6)	153.00	
2	O2W-H2WBO3W ^{iv}	0.8600	2.2000	3.046(11)	166.00	
	O3W-H3WBO5W ^v	0.8500	2.5300	2.930(2)	110.00	
	O5W-H5WAO3W ^{vi}	0.8500	2.3300	2.930(2)	128.00	
	O4W-H4WB O3	0.8500	1.8900	2.666(12)	151.00	
3	O1W-H1WA O3 ^{vii}	0.8500	1.9000	2.721(3)	162.00	
	O1W-H1WAO4 ^{viii}	0.8500	1.9000	2.720(3)	161.00	
	O1W-H1WBO1 ^{ix}	0.8500	1.9500	2.738(3)	154.00	
4	O3W-H3WAO3	0.8500	2.1600	2.815(6)	134.00	
	O3W-H3WBO2W	0.8500	2.1200	2.966(5)	172.00	
	O2W-H2WBO3W ^x	0.8500	2.2100	3.055(5)	170.00	
5	C6-H6O1S ^{xi}	0.9300	2.4300	3.324(5)	161.00	
Symmetry Code : (i) = 1-x,2-y,-z ; (ii) = x,y,-1+z; (iii) = $x,3/2-y,-1/2+z$; (iv) = 1-x,2-y,1-z; (v) =						
-x, 1/2+y, 1/2-z; (vi) = $-x, -1/2+y, 1/2-z;$ (vii) = $2-x, 1-y, 2-z;$ (viii) = $1+x, -1+y, z;$ (ix) = $2-x, 2-y, 1-z;$						
(x) = 1+x, y, z; (xi) = x, 1+y, z.						

Table S3. Selected Bond Length (Å) and Bond Angles (°) of Complex 2

Co1-O1	2.055(3)	Col-OlW	2.056(3)
Co1-O2W	2.158(3)	Co1-N1	2.150(4)
$Co1-O2^a$	2.118(3)	Col-N4 ^b	2.166(5)
O1-Co1-O1W	178.28(14)	O1-Co1-O2W	95.82(13)
O1-Co1-N1	90.94(13)	O1-Co1-O2 ^{<i>a</i>}	80.70(12)
O1-Co1-N4 ^b	90.17(14)	O1W-Co1-O2W	85.90(13)
O1W-Co1-N1	89.14(13)	O1W-Co1-O2 ^{<i>a</i>}	97.59(12)
O1W-Co1-N4 ^b	89.75(14)	O2W-Co1-N1	91.21(13)
O2 ^{<i>a</i>} -Co1-O2W	176.32(12)	O2W-Co1-N4 ^b	89.17(13)
O2 ^{<i>a</i>} -Co1-N1	87.69(13)	N1-Co1-N4 ^b	178.79(15)
O2 ^{<i>a</i>} -Co1-N4 ^{<i>b</i>}	92.01(13)		

Symmetry Code: a = x, 3/2-y, -1/2+z, b = 1+x, 3/2-y, 1/2+z.

Table S4. Selected Bond	Length (Å)	and Bond Angles () of Complex 3
-------------------------	------------	-------------------	----------------

Zn1-O1	2.411(4)	Zn1-N1	2.057(3)
Zn1-O1W	2.032(2)	Zn1-O3 ^{<i>a</i>}	2.041(2)
Zn1-O2	2.021(3)	$Zn1-O4^{a}$	2.443(2)
O1-Zn1-O1W	104.75(11)	O1W-Zn1-O2	93.57(11)
O1-Zn1-O2	57.41(12)	O1W-Zn1-N1	101.41(10)
O1-Zn1-N1	87.42(11)	O1W-Zn1-O3 ^{<i>a</i>}	97.17(10)
O1-Zn1-O3 ^{<i>a</i>}	154.62(10)	O1W-Zn1-O4 ^a	153.84(9)
O1-Zn1-O4 ^{<i>a</i>}	98.67(10)	O2-Zn1-N1	144.39(13)
O2-Zn1-O3 ^{<i>a</i>}	109.22(11)	O4 ^{<i>a</i>} -Zn1-N1	91.01(10)
O2-Zn1-O4 a	89.26(10)	$O3^{a}$ -Zn1-O4 a	57.59(9)
O3 ^{<i>a</i>} -Zn1-N1	100.78(11)		

Symmetry code: a = -1+x, y, z.

Table S5. π - π interactions in Complex 3

$Ring(i) \rightarrow$	Distance of centroid(i)	Dihedral angle	Distance between the (i,j)
Ring(j)	from ring(j),(Å)	(i,j) (deg)	ring centroids,(Å)
$R(1) \rightarrow R(2)^{i}$	3.953(2)	9.3 (2)	3.6277(18)
$R(2) \rightarrow R(1)$	3.953(2)	9.3 (2)	3.4986(16)
Symmetry code	e: (i) = -x, -y, 1-z; R(i)/R(j)) denotes the ith/jth	rings: $R(1) = N(1)/C(10)$
/C(11)/C(12)/ 0	C(13)/C(14); R(2) = N(4)/C(14); R(2);	C(24)/C(25)/C(27)/C	C(28)/C(33).

Table S6. Selected Bond Length (Å) and Bond Angles (°) of Complex 4

	Zn1-O1	2.060(2)	Zn1-O1W	2.031(3)		
	Zn1-O2	2.349(3)	Zn1-N1	2.033(3)		
	Zn1-O4 ^{<i>a</i>}	1.958(2)	$O4^{a}$ -Zn1-N1	124.26(10)		
	O1-Zn1-O1W	90.42(10)	O1-Zn1-O2	57.94(10)		
	O1-Zn1-N1	123.22(10)	O1-Zn1-O4 a	107.34(9)		
	O1W-Zn1-O2	147.52(10)	O1W-Zn1-N1	101.35(10)		
	O1W-Zn1-O4 ^{<i>a</i>}	100.06(10)	O2-Zn1-N1	91.67(10)		
	O2-Zn1-O4 a	96.73(10)				
•	Symmetry Code: $a = x, -1+y, z$.					

Cd1-O1	2.427(2)	Cd1-O2	2.357(3)
Cd1-N1	2.317(2)	Cd1-O3 ^{<i>d</i>}	2.371(2)
$Cd1-O4^d$	2.527(3)	$Cd1-N2^{c}$	2.325(2)
$Cd1-O4^b$	2.333(2)	O1-Cd1-O2	54.30(7)
O1-Cd1-N1	92.17(7)	O1-Cd1-N2 ^c	91.31(7)
O1-Cd1-O3 ^d	85.27(7)	O1-Cd1-O4 ^b	147.57(8)
O1-Cd1-O4 ^{<i>d</i>}	137.29(7)	O2-Cd1-N1	95.03(9)
$O3^d$ -Cd1-O4 ^b	127.15(9)	O2-Cd1-O3 ^d	139.38(7)
O3 ^{<i>d</i>} -Cd1-N1	89.73(8)	O2-Cd1-O4 ^{<i>d</i>}	166.80(7)
O4 ^{<i>d</i>} -Cd1-N1	91.03(8)	O2-Cd1-N2 ^c	85.87(9)
N1-Cd1-N2 ^c	176.25(7)	O2-Cd1-O4 ^b	93.36(8)
O4 ^{<i>b</i>} -Cd1-N1	88.14(7)	$O4^{d}$ -Cd1-N2 ^c	87.37(8)
$O3^d$ -Cd1-O4 d	52.16(7)	O4 ^{<i>d</i>} -Cd1-O4 ^{<i>b</i>}	75.09(8)
$O3^{d}$ -Cd1-N2 ^c	91.95(8)	O4 ^{<i>b</i>} -Cd1-N2 ^{<i>c</i>}	88.17(7)
Symmetry Code: $a = 1+x, y, z$	z, b = 2-x, 2-y, 1-	z, c = x, -1+y, -1+z	d = -1 + x, y, z.

Table S7. Selected Bond Length (Å) and Bond Angles (°) of Complex 5 $\,$

Table S8. Selected Bond Length (Å) and Bond Angles (°) of Complex 6

Cd1-O1	2.292(2)	Cd1-O3	2.397(2)
Cd1-O4	2.437(3)	Cd1-N1	2.333(2)
Cd1-N4 ^b	2.317(2)	Cd1-O1 ^{<i>a</i>}	2.563(2)
Cd1-O2 ^{<i>b</i>}	2.316(2)	O1-Cd1-O3	94.31(8)
O1-Cd1-N1	88.73(8)	O1-Cd1-N4 ^b	91.76(8)
O1-Cd1-O1 ^{<i>a</i>}	77.58(8)	O1-Cd1-O2 ^{<i>a</i>}	129.13(9)
O3-Cd1-O4	52.39(9)	O3-Cd1-N1	87.33(9)
O3-Cd1-N4 ^b	90.00(9)	O1 ^{<i>a</i>} -Cd1-O3	170.27(8)
O2 ^{<i>a</i>} -Cd1-O3	135.99(9)	O4-Cd1-N1	96.48(10)
O4-Cd1-N4 ^b	81.65(10)	O1 ^{<i>a</i>} -Cd1-O4	134.52(8)
O2 ^{<i>a</i>} -Cd1-O4	85.05(9)	N1-Cd1-N4 ^b	177.32(9)
O1 ^{<i>a</i>} -Cd1-N1	97.72(8)	O2 ^{<i>a</i>} -Cd1-N1	86.99(8)
O1 ^{<i>a</i>} -Cd1-N4 ^{<i>b</i>}	84.96(9)	$O2^b$ -Cd1-N4 b	94.74(8)
O1 ^{<i>a</i>} -Cd1-O2 ^{<i>a</i>}	52.99(8)	Cd1-O1-Cd1 ^{<i>a</i>}	102.02(8)
O1-Cd1-O4	145.74(9)		

Symmetry Code: a = 1/2-x, y, 7/4-z, b = x, 1+y, z.

FigureS1. The packing diagram for the 2D grids in 1

FigureS2. TGA of 1 under nitrogen atmosphere

Figure S3. TGA of 2 under nitrogen atmosphere

Figure S4. TGA of 3 under nitrogen atmosphere

Figure S5. TGA of 4 under nitrogen atmosphere

Figure S6. TGA of 5 under nitrogen atmosphere

Figure S7. TGA of 6 under nitrogen atmosphere

Figure S8. PXRD patterns of **1** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound; (*c*) de-solvated

Figure S9. PXRD patterns of **2** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound; (*c*) de-solvated

Figure S10. PXRD patterns of **3** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound; (*c*) de-solvated

Figure S11. PXRD patterns of **4** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound; (*c*) de-solvated

Figure S12. PXRD patterns of **5** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound; (*c*) de-solvated

Figure S13. PXRD patterns of **6** in different states (*a*) Simulated from X-ray single crystal data; (*b*) bulk as-synthesized compound.

Figure S14. N_2 adsorption isotherms for compounds 1, 4 and 5 collected at 77 K (The filled and open shapes in the figures represents the adsorption and desorption branches, respectively).