Supporting Information

General methods
Bis(4-pyridylmethyl)piperazine (bpmp) was prepared via a published procedure. ${ }^{1}$ The remaining starting materials used in these synthetic reactions are purchased commercially and were used as obtained from the supplier. The power X-ray diffraction (PXRD) patterns were collected by a RIGAKU DMAX2500 X-ray diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=0.154 \mathrm{~nm})$. The FT-IR spectra were obtained on a Nicolet Nexus FT-IR spectrometer in the range of $650-4000 \mathrm{~cm}^{-1}$. Elemental analysis for C, H, N was performed on a German Elementary Vario EL III instrument. Thermogravimetric analysis was recorded on a NETZSCH STA 449C unit with a heating rate of $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ in nitrogen atmosphere. Magnetic susceptibility data were measured using a Quantum Design MPMS-XL5 SQUID magnetometer.

Preparation of $\left[\mathrm{Co}_{4}(\mathrm{sdb})_{4}(\mathrm{bpmp})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ (1)
Cobalt(II) nitrate hexahydrate ($58 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{sdb}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bpmp ($54 \mathrm{mg}, 0.2 \mathrm{mmol}$) were placed into 8 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ in a Teflon-lined 23 mL steel autoclave. The autoclave was sealed and heated at $120^{\circ} \mathrm{C}$ for 72 h , and then cooled to $25^{\circ} \mathrm{C}$ for 24 h . Red blocks of $\mathbf{1}(43 \%$ yield based on Co) were isolated after washing with distilled water and drying in air. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{52} \mathrm{Co}_{2} \mathrm{~N}_{6} \mathrm{O}_{15} \mathrm{~S}_{2}$ 1: C, 52.79; H, 4.43; N, 7.10. Found: C, 52.72; H, 4.39; N, 7.06\%. Selected IR data: 2988 (s), 2900 (s), $1636(\mathrm{~m}), 1560$ (w), 1394 (s), 879 (m), 780(w).

Preparation of $\left[\mathrm{Cd}_{4}(\mathrm{sdb})_{4}(\mathrm{bpmp})_{3}\right]$
Cadmium(II) nitrate tetrahydrate ($62 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{Sdb}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bpmp ($54 \mathrm{mg}, 0.2 \mathrm{mmol}$) were placed into 8 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ in a Teflon-lined 23 mL steel autoclave. The autoclave was sealed and heated at $120^{\circ} \mathrm{C}$ for 72 h , and then cooled to $25^{\circ} \mathrm{C}$ for 24 h . Yellow blocks of 2 (39% yield based on Cd) were isolated after washing with distilled water and drying in air. Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{Cd}_{2} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{~S}_{2}$ 2: C, 50.53 ; H, 3.75; N, 6.80. Found: C, $50.58 ; \mathrm{H}, 3.72 ; \mathrm{N}, 6.75$. Selected IR data: 1624 (s), 1560 (m), 1400 (s), 1323(m), 1162 (s), 779 (m).

X-Ray crystallography
Diffraction data for $\mathbf{1}$ and 2 were collected on a Rigaku Mercury CCD and SuperNova, Dual, Mo at zero, Atlas diffractometers respectively. The structures were solved using direct methods and refined on F^{2} using SHELXTL ${ }^{2}$. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms bound to carbon atoms were placed in calculated positions and refined isotropically with a riding model. Hydrogen atoms of the water molecules were found in the electron density map and refined by riding. Selected bond distances and angles of the 1-2 are listed in Table S1.

b

Fig. S1 Coordination environments of $\mathbf{1}$ (a) and 2 (b).

C
d

Fig.S2 a $\left\{\mathrm{Co}(\mathrm{COO})_{2} \mathrm{H}_{2} \mathrm{O}\right\}$ three-bladed paddlewheel SBU (left) and its schematic perspective (right) in 1; b doubled paddlewheel SBU in 2; c trans conformation of bpmp in $\mathbf{1}$; d cis conformation of bpmp in $\mathbf{2}$ (cobalt, turquoise; carbon, black; oxygen, red).

Fig. S3 The $\pi \cdots \pi$ interactions (the red dotted lines) between the sdb^{2-} rings from different sets of frameworks in 1.

Fig. S4 H bond (the yellow dotted lines) between aqua ligand and free water molecule in 1. $(\mathrm{d}(\mathrm{O} 6 \ldots \mathrm{H} 6 \mathrm{~B})=0.83 \AA, \angle \mathrm{O} 6-\mathrm{H} 6 \mathrm{~B}-\mathrm{O} 16=158 \AA, \mathrm{~d}(\mathrm{H} 6 \mathrm{~B} \ldots \mathrm{O} 16)=1.97 \AA)$ (cobalt, turquoise; carbon, black; oxygen, red; hydrogen, green; nitrogen, blue)

Fig. S5 a Co_{2} clusters in $\mathbf{1}$ as five-connected nodes; b Cd_{4} clusters in $\mathbf{2}$ as six-connected nodes.

Fig.S6 (a) 2-fold interpenetration in 1; (b) self-threading like motif in noninterpenetrated framework in 2.

Fig. S7 PXRD patterns of $\mathbf{1 (a)}$ and 2(b).

Fig. S8 Thermal gravimetric curves for $\mathbf{1}$ and 2.

1 lost its water solvent and aqua ligands between 120 and $160{ }^{\circ} \mathrm{C}(4.6 \%$ calculated, 4.5\% observed), and then the framework undergoes decomposition.

2 underwent no obvious weight loss before $320^{\circ} \mathrm{C}$, and the compound decomposes rapidly on further heating.

Fig. S9 The temperature dependence of $\chi_{\mathrm{M}} \mathrm{T}$ at 1 kOe for $\mathbf{1}$.

Fig. S10 Solid-state emission spectra of 2, $\mathrm{H}_{2} \mathrm{sdb}$ and bpmp at room temperature.
Table S1. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes 1-2

Complex 1			
Co1-O1	2.045 (3)	Co2-O2	2.080 (3)
Co1-O3	2.089 (3)	Co2-O4	2.082 (3)
Col-O6	2.101 (3)	Co2-O15ii	2.137 (3)
Co1-O5	2.107 (3)	Co2-05	2.153 (3)
Co1-N5	2.136 (3)	Co2-N1	2.156 (3)
Col-O10i	2.151 (3)	Co2-N3	2.168 (4)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$	95.28 (14)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{O} 4$	92.04 (13)
O1-Co1-O6	174.70 (12)	O2-Co2-O15ii	174.47 (12)
O3-Co1-O6	88.19 (13)	O4-Co2-O15ii	87.05 (12)
O1-Co1-O5	95.01 (12)	O2-Co2-O5	97.49 (12)
O3-Co1-O5	85.53 (11)	O4-Co2-O5	89.97 (11)
O6-Co1-O5	89.25 (12)	O15ii-Co2-O5	87.97 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 5$	85.33 (13)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 1$	89.23 (13)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{N} 5$	90.56 (13)	$\mathrm{O} 4-\mathrm{Co} 2-\mathrm{N} 1$	176.20 (13)
O6-Co1-N5	90.63 (13)	O15ii-Co2-N1	92.02 (12)
O5-Co1-N5	176.10 (12)	O5-Co2-N1	86.31 (12)
O1-Co1-O10i	88.56 (14)	$\mathrm{O} 2-\mathrm{Co} 2-\mathrm{N} 3$	90.87 (13)
O3-Co1-O10i	175.44 (13)	O4-Co2-N3	91.94 (13)
O6-Co1-O10i	88.16 (13)	O15ii-Co2-N3	83.72 (13)
O5-Co1-O10i	91.68 (12)	O5-Co2-N3	171.36 (12)
N5-Co1-O10i	92.21 (13)	N1-Co2-N3	91.62 (13)
Complex 2			
Cd1-O1	2.2830 (17)	Cd1-Cd2	3.4246 (2)
Cd1-O6i	2.3076 (16)	Cd2-O8	2.2078 (16)

Cd1-N1	2.3128 (19)	Cd2-O5i	2.2183 (16)
Cd1-O11i	2.3536 (17)	Cd2-N4iii	2.350 (2)
Cd1-O7	2.3854 (17)	Cd2-N5	2.399 (2)
Cd1-O11ii	2.5690 (17)	$\mathrm{Cd} 2-\mathrm{O} 12 \mathrm{i}$	2.4038 (16)
Cd1-O12i	2.5987 (15)	Cd2-O2	2.4125 (16)
O1-Cd1-O6i	80.87 (6)	O7- $\mathrm{Cd} 1-\mathrm{Cd} 2$	57.19 (4)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	85.10 (6)	O11ii-Cd1-Cd2	148.48 (4)
O6i-Cd1-N1	154.04 (7)	O12i-Cd1-Cd2	44.46 (3)
O1-Cd1-O11i	175.94 (6)	O8-Cd2-O5i	171.58 (6)
O6i-Cd1-O11i	102.92 (6)	O8-Cd2-N4iii	92.20 (6)
N1-Cd1-O11i	90.84 (6)	$\mathrm{O} 5 \mathrm{i}-\mathrm{Cd} 2-\mathrm{N} 4 \mathrm{iii}$	95.44 (6)
$\mathrm{O} 1-\mathrm{Cd1}-\mathrm{O} 7$	87.21 (6)	$\mathrm{O} 8-\mathrm{Cd} 2-\mathrm{N} 5$	88.87 (6)
O6i-Cd1-O7	126.77 (6)	O5i-Cd2-N5	95.52 (6)
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 7$	73.80 (6)	N4iii-Cd2-N5	83.25 (7)
O11i-Cd1-O7	91.57 (6)	$\mathrm{O} 8-\mathrm{Cd} 2-\mathrm{O} 12 \mathrm{i}$	92.03 (6)
O1-Cd1-O11ii	111.13 (6)	$\mathrm{O} 5 \mathrm{i}-\mathrm{Cd} 2-\mathrm{O} 12 \mathrm{i}$	81.34 (6)
O6i-Cd1-O11ii	86.24 (6)	N4iii-Cd2-O12i	166.32 (6)
N1-Cd1-O11ii	78.57 (6)	N5-Cd2-O12i	83.83 (6)
O11i-Cd1-O11ii	68.01 (6)	$\mathrm{O} 8-\mathrm{Cd} 2-\mathrm{O} 2$	95.88 (6)
O7-Cd1-O11ii	145.29 (6)	O5i-Cd2-O2	82.16 (6)
O1-Cd1-O12i	130.17 (5)	N4iii-Cd2-O2	78.94 (6)
$\mathrm{O} 6 \mathrm{i}-\mathrm{Cd} 1-\mathrm{O} 12 \mathrm{i}$	75.85 (5)	$\mathrm{N} 5-\mathrm{Cd} 2-\mathrm{O} 2$	161.71 (6)
N1-Cd1-O12i	129.21 (6)	$\mathrm{O} 12 \mathrm{i}-\mathrm{Cd} 2-\mathrm{O} 2$	113.54 (5)
O11i-Cd1-O12i	52.89 (5)	O8-Cd2-Cd1	91.80 (4)
O7-Cd1-O12i	73.30 (6)	O5i- $\mathrm{Cd} 2-\mathrm{Cd} 1$	79.95 (4)
O11ii-Cd1-O12i	110.55 (5)	N4iii-Cd2-Cd1	143.55 (5)
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{Cd} 2$	86.32 (4)	N5-Cd2-Cd1	133.05 (5)
O6i- $\mathrm{Cd} 1-\mathrm{Cd} 2$	70.33 (4)	O12i-Cd2-Cd1	49.22 (4)
N1-Cd1-Cd2	130.56 (5)	$\mathrm{O} 2-\mathrm{Cd} 2-\mathrm{Cd} 1$	64.61 (4)
O11i-Cd1-Cd2	96.28 (4)		

Symmetry code for 1: (i) -x, $-1-y$, $-z$; (ii) 1-x, 1-y, 1-z; symmetry code for 2: (i) $x, 1+y$, z; (ii) $-x,-y, 2-z$; (iii) $1+x, y,-1+z$.

Reference

1 Y. Niu, H. Hou, Y. Wei, Y. Fan, Y. Zhu, C. Du and X. Xin, Inorg. Chem. Commun, 2001, 4, 358-361.
2 G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution and Refinement, 1997, University of Göttingen.

