Supporting Information

Coordination Polymers of a Multipyridyl and Pyrazolyl Ligand with Conformational Flexibility: Syntheses, Structures and Luminescence

Caixia Ding, Xing Rui, Cheng Wang and Yongshu Xie

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China

*Corresponding Author: Yongshu Xie

Telephone number: (86)-21-64250772

E-mail address: yshxie@ecust.edu.cn

Fig. S1. The ¹H NMR spectrum of **D2** in DMSO- d_6

Fig. S2. The ¹³C NMR spectrum of **D2** in DMSO- d_6

Fig. S4. The ¹H NMR spectrum of **L** in DMSO- d_6

Fig. S5. HRMS of L in MeOH

Fig. S6. Stimulated (red) and experimental (black) XRPD patterns of complexes 1-3.

Fig. S7. Stimulated (red) and experimental (black) XRPD patterns of complexes 4-6.

Fig. S8. 1D zigzag chain of complex **3**.

Fig. S9. 1D chain of complex 5.

Fig. S10. 1D chain of complex 6.

Table S1. Selected Bond lengths (Å) and Angles (°) for complexes $1 \sim 8$.

Complex 1

Zn(1)-N(9) 2.019(9)	N(9)-Zn(1)-N(10) 109.6(4)	N(9)-Zn(1)-Cl(2) 102.9(3)				
Zn(1)-N(10) 2.035(10)	I(9)-Zn(1)-Cl(1) 109.6(3) N(10)-Zn(1)-Cl(2) 102.0(3)					
Zn(1)-Cl(1) 2.208(3)	N(10)-Zn(1)-Cl(1) 108.9(3)	Cl(1)-Zn(1)-Cl(2) 123.13(16)				
Zn(1)-Cl(2) 2.246(4)						
Complex 2						
Zn(1)-N(10)#1 2.031(9)	N(10)#1-Zn(1)-N(9) 108.0(4)	N(10)#1-Zn(1)-Br(2) 108.2(3)				
Zn(1)-N(9) 2.037(8)	N(10)#1-Zn(1)-Br(1) 108.6(3)	N(9)-Zn(1)-Br(2) 104.7(3)				
Zn(1)-Br(1) 2.367(2)	N(9)-Zn(1)-Br(1) 103.6(2)	Br(1)-Zn(1)-Br(2) 122.92(8)				
Zn(1)-Br(2) 2.3699(18)						
Symmetry transformations used to generate equivalent atoms: #1 -x+3/2, y+1/2, -z+3/2						
Complex 3						
Zn(1)-N(10)#1 2.055(8)	N(10)#1-Zn(1)-N(9) 100.0(3)	N(10)#1-Zn(1)-I(1) 109.7(3)				
Zn(1)-N(9) 2.067(8)	N(10)#1-Zn(1)-I(2) 110.1(2)	N(9)-Zn(1)-I(1) 104.3(3)				
Zn(1)-I(2) 2.5362(16)	N(9)-Zn(1)-I(2) 109.7(2)	I(2)-Zn(1)-I(1) 120.83(6)				
Zn(1)-I(1) 2.5583(18)						
Symmetry transformations used to genera	ate equivalent atoms: #1 -x+1/2, y-1/2, -z+1	1/2				
Complex 4						
Cd(1)-N(10)#1 2.436(5)	N(10)#1-Cd(1)-N(9) 96.55(18)	N(10)#1-Cd(1)-Cl(1) 90.05(14)				
Cd(1)-N(9) 2.499(6)	N(10)#2-Cd(1)-N(9) 83.45(18)	N(9)-Cd(1)-Cl(1) 89.19(16)				
Cd(1)-Cl(1) 2.532(3)	N(9)-Cd(1)-N(9)#3 180.0(2)	N(9)#3-Cd(1)-Cl(1) 90.81(16)				
N(10)#1-Cd(1)-N(10)#2 180.00(18)	N(10)#1-Cd(1)-Cl(1)#3 89.95(14)	Cl(1)#3-Cd(1)-Cl(1) 180.0				
Symmetry transformations used to generate equivalent atoms: #1 x, y, z-1 #2 -x+3, -y+1, -z+1 #3 -x+3, -y+1, -z						
Complex 5						
Cd(1)-N(9) 2.487(4)	N(9)#1-Cd(1)-N(10)#2 95.82(15)	N(10)#2-Cd(1)-Br(1)#1 90.84(11)				
Cd(1)-N(10)#2 2.496(5)	N(9)-Cd(1)-Br(1)#1 89.75(10)	N(10)#3-Cd(1)-Br(1)#1 89.16(11)				
Cd(1)-Br(1) 2.6646(6)	N(9)#1-Cd(1)-Br(1)#1 90.25(10)	N(9)-Cd(1)-Br(1) 90.25(10)				
N(9)-Cd(1)-N(10)#2 84.18(15)						
Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+3 #2 -x, -y+1, -z+2 #3 x+1, y, z+1						
Complex 6						
Cd(1)-N(10)#1 2.270(5)	N(10)#1-Cd(1)-N(9) 93.87(19)	N(10)#1-Cd(1)-I(1) 106.08(14)				
Cd(1)-N(9) 2.301(5)	N(10)#1-Cd(1)-I(2) 111.83(15)	N(9)-Cd(1)-I(1) 103.82(14)				

Cd(1)-I(2)	2.6708(9)	N(9)-Cd(1)-I(2)	107.62(14)	I(2)-Cd(1)-I(1)	128.01(3)	
Cd(1)-I(1)	2.7038(8)					
Symmetry transformations used to generate equivalent atoms: #1 -x+3/2, y-1/2, -z+3/2						
Complex 7						
Co(1)-N(5)	2.085(4)	N(8)-Co(1)-N(11)	92.89(16)	N(8)-Co(1)-N(9)	84.92(14)	
Co(1)-N(8)	2.094(4)	N(6)-Co(1)-N(11)	92.01(16)	N(6)-Co(1)-N(9)	88.18(14)	
Co(1)-N(6)	2.100(4)	N(5)-Co(1)-N(3)	79.49(14)	N(11)-Co(1)-N(9)	177.72(15)	
Co(1)-N(11)	2.103(5)	N(8)-Co(1)-N(3)	168.21(15)	N(3)-Co(1)-N(9)	93.06(13) N(5)-	
Co(1)-N(3)	2.105(3)	N(6)-Co(1)-N(3)	88.97(14)	Co(1)-N(6) 167	.32(14)	
Co(1)-N(9)	2.244(4)	N(11)-Co(1)-N(3)	89.22(15)	N(8)-Co(1)-N(6)	79.37(15)	
N(5)-Co(1)-N	I(8) 111.96(15)	N(5)-Co(1)-N(9)	87.23(14)	N(5)-Co(1)-N(11)	93.04(16)	
Complex 8						
Cu(1)-N(3)	1.971(3)	N(3)-Cu(1)-N(2) 1	73.39(13)	N(3)-Cu(1)-N(8)#1	88.91(13)	
Cu(1)-N(2)	1.972(3)	N(3)-Cu(1)-N(4) 8	2.56(12)	N(2)-Cu(1)-N(8)#1	88.92(13)	
Cu(1)-N(4)	1.978(3)	N(2)-Cu(1)-N(4) 9	1.45(12)	N(4)-Cu(1)-N(8)#1	95.88(12)	
Cu(1)-N(1)	1.990(3)	N(3)-Cu(1)-N(1) 1	03.22(14)	N(1)-Cu(1)-N(8)#1	84.83(13)	
Cu(1)-N(8)#1	2.433(3)	N(2)-Cu(1)-N(1)	82.79(13)	N(3)-Cu(1)-N(14)	95.39(17)	
Cu(1)-N(14)	2.546(5)	N(4)-Cu(1)-N(1)	174.20(13)	N(2)-Cu(1)-N(14)	87.07(16)	
N(1)-Cu(1)-N	u(14) 91.82(16)	N(8)#1-Cu(1)-N(14) 175.07(14)	N(4)-Cu(1)-N(14)	87.10(16)	

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1,z+1/2