Tautomeric Bias in Polymorphs and Pseudopolymorphs of Succinylsulfathiazole: Fast Evaporation Screening and Thermal Studies

Partha Pratim Bag, Raghuram Reddy Kothur and C. Malla Reddy*

Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata,

741252, West Bengal, India. Fax: +91 33 25873020; Tel:+91 33 25873118 (Ext. No: 238)

* To whom correspondence should be addressed. E-mail: <u>cmallareddy@gmail.com</u>

Table S1. Geometrical parameters of hydrogen bonds in all the polymorphs, hydrate and solvates.

	D—HA	L	DH (Å)	HA(Å)	D A (Å)	D—HA (deg)
Polyı	morph I					
Nl	H1	07	0.8800	2.0400	2.9140	174.00
02	H2C	04	0.8300	1.9700	2.7399	155.00
N3	H3	08	0.8700	2.0100	2.8599	166.00
N4	H4	01	0.8400	2.0900	2.9004	160.00
NG	НбА	03	0.9200	1.9100	2.8139	168.00
06	НбВ	09	0.8900	1.9000	2.7560	160.00
C2	H2A	N5	0.9700	2.5900	3.3938	141.00
C9	H9	05	0.9300	2.5800	2.9414	104.00
C10	H10	03	0.9300	2.4100	2.9051	113.00
C22	H22	010	0.9300	2.4800	3.3867	164.00
C23	H23	08	0.9300	2.3600	2.9227	119.00

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2014

Polyn	norph II					
N1	H1	05	0.8100	2.1500	2.9542	170.00
02	H2C	N2	0.8600	1.9400	2.7875	166.00
N3	H3	01	0.7900	1.9600	2.7413	174.00
C9	H9	05	0.9300	2.5500	2.9301	105.00
C10	H10	03	0.9300	2.3000	2.8838	120.00
C13	H13	04	0.9300	2.4300	3.1757	137.00
SST/1	ЧО					
N1	H1	02	0.7600	2.1900	2.9474	178.00
01	H1A	06	0.9500	1.7400	2.6375	158.00
N3	H3	N2	1.0800	1.8000	2.8655	166.00
06	H6A	03	0.9300	1.8400	2.7722	174.00
06	H6B	04	0.7800	2.1900	2.8172	138.00
C6	Нб	06	0.9300	2.5500	3.2751	135.00
C9	H9	05	0.9300	2.5500	2.9228	104.00
C10	H10	03	0.9300	2.2600	2.8482	121.00
SST/	AcMe					
01	H1	08	0.8600	1.9000	2.7162	159.00
Nl	H1A	02	0.8000	2.1000	2.8901	171.00
N3	H3	N2	0.8900	2.0000	2.8841	176.00
N4	H4	07	0.8100	2.4500	3.1883	153.00
NG	Нб	010	1.0900	2.3900	3.2612	136.00

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2014

NG	H	H6	••	N5	1.0900	1.7700	2.7888	154.00
06	I	НбВ	••	03	0.8200	2.0700	2.7209	136.00
C6	I	НбА	••	08	0.9300	2.5800	3.3547	141.00
C7	I	H7		05	0.9300	2.4600	2.8605	106.00
C10	I	H10	••	03	0.9300	2.3500	2.9051	118.00
C19	I	H19	••	08	0.9300	2.2900	2.8525	118.00
C20	I	H20	•••	09	0.9300	2.5600	2.9280	104.00
C22	I	H22		011	0.9300	2.5700	3.2601	132.00
SST/7	THF							
N1	I	H1	•••	06	0.8400	2.5800	3.0682	118.00
Nl	I	H1	•••	02	0.8400	2.4800	3.2322	150.00
01	I	HIA		08	1.0200	1.8300	2.7432	147.00
N3	I	H3		N2	0.9400	1.8900	2.8104	169.00
N4	I	H4	•••	07	0.8000	2.1100	2.9053	175.00
06	I	H6A	•••	03	0.7900	1.9300	2.7066	165.00
N6	I	H6B	•••	N5	0.8400	2.0400	2.8724	173.00
C6	I	H6	•••	03	0.9300	2.2800	2.8561	120.00
C7	I	H7	•••	04	0.9300	2.5200	2.8998	105.00
C19	I	H19		08	0.9300	2.3600	2.9081	118.00
C22	I	H22		010	0.9300	2.4700	2.8600	106.00
C23	H	H23		03	0.9300	2.6000	3.3570	139.00

Table S2. Conditions used at rotary evaporator for the preparation of succinylsulfathiazole (SST) polymorphs. The revolution speed (130 rpm) and water bath temperature (50 °C) were always constant. In all the batches 70 mg of SST (0.1969 mmol; Sigma-Aldrich) was dissolved in suitable solvents (30-40 mL) for preparing the solid forms.

Solvent/No of attempts	Pressure (mbar) (± 5)	Forms Obtained
EA	250	Polymorph I
EtOH	250	Polymorph II
H_2O	30	SST/H ₂ O
AcMe	400	SST/AcMe
THF	250	SST/THF
MeOH	300	SST/H ₂ O
MeCN	180	SST/H ₂ O
MeCN/ MeOH	200	SST/H ₂ O

Table S3. New SST Solid Forms and Corresponding Melting Points

Name of solid forms	mp (°C), T _{max} from DSC
Polymorph I	207.65
Polymorph II	192.54
SST/H ₂ O	193.02
SST/AcMe	191.70
SST/THF	189.55

Figure S1. IR spectra of different forms of succinylsulfathiazole, obtained from using one single crystal of sufficient size, in each case. (a) Polymorph I, (b) polymorph II (c) SST/H_2O , (d) SST/AcMe and (e) SST/THF.

Figure S2. (a) PXRD and (b) TGA of hydrates of SST obtained by different method. Notice the PXRD of $SST/2H_2O$ by slow evaporation method is different from other hydrated samples. See the fast evaporation (FE) product is the mixture of two hydrate forms.

Figure S3. PXRD of (a) simulated and (b) experimental patterns of FE product, of succinylsulfathiazole polymorphs, hydrate and solvates (THF and AcMe).

Figure S4. PXRD patterns of different forms of SST after a long exposure (1 yr) to atmosphere confirm their conversion to $SST \cdot H_2O$, except polymorph II which is converted to $SST \cdot 2H_2O$ (Fig. S2a).

Figure S5. PXRD pattern of SST obtained by LAG method from different solvents. Notice the similarity of patterns of all the LAG products, which correspond to $SST \cdot H_2O$.

Figure S6. ORTEP diagram of the structure, succinylsulfathiazole polymorph I. Displacement ellipsoids are drawn at the 50% probability level.

Figure S7. ORTEP diagram of the structure, succinylsulfathiazole polymorph II. Displacement ellipsoids are drawn at the 50% probability level.

Figure S8. ORTEP diagram of the structure, SST/H₂O. Displacement ellipsoids are drawn at the 50% probability level.

Figure S9. ORTEP diagram of the structure, SST/AcMe solvate. Displacement ellipsoids are drawn at the 50% probability level.

Figure S10. ORTEP diagram of the structure, SST/THF solvate. Displacement ellipsoids are drawn at the 50% probability level.

Scheme S1. Flow chart of the crystal structure database (ConQuest, V 5.34) search conducted to identify sulphonamide drugs in imidine tautomeric form. The entries in exlusively imidine form with more than 3 hits are highlighted in *bold*.

(a) Five member ring fragment used for CSD Search

Ethyl 3-(4,5-dimethoxy-2-(3-methyl-2-pyridylsulfamoyl)phenyl)propionate (1 Hit) ((4-Methylphenyl)sulfonyl)-imino-1H-pyridine (2 Hits) 4-Methyl-N-(4-methyl-3-phenylquinolin-2(1H)-ylidene)benzenesulfonamide (1 Hit) 2-Benzylthio-5-carbamoyl-4-chloro-N-(5,6-bis(4-methoxyphenyl)-1,2,4-triazin-3ylidene)benzenesulfonamide dimethylsulfoxide solvate (1 Hit) 2,4,6-Trimethyl-N-(6-methylpyridin-2-yl)benzenesulfonamide (1 Hit) N'-Trifluoromethansulfonyl-2-aminopyridine (1 Hit) 4-Amino-N-(4-methyl-1H-pyridin-2-ylidene)benzenesulfonamide (2 Hits) N-(5-Methyl-pyridin-2(1H)-ylidene)benzenesulfonamide (1 Hit) N-(3-Methyl-1H-pyridin-2-ylidene)benzenesulfonamide (1 Hit) N-(4-((3-Methyl-1H-pyridin-2-ylidene)sulfamoyl)phenyl)acetamide (1 Hit) N-(4-Methyl-1H-pyridin-2-ylidene)benzenesulfonamide (1 Hit)