Supporting materials

Structural versatile cadmium coordination polymers based on bis(1,2,4-triazole)ethane and rigid aromatic multicarboxylates: Syntheses, structures and properties

Jian-Gang Ding, Xia Zhu, Yan-Feng Cui, Na Liang, Peng-Peng Sun, Qian Chen,

Bao-Long Li* and Hai-Yan Li

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. E-mail: libaolong@suda.edu.cn

		1	
Cd(1)-O(1)	2.248(2)	Cd(1)-O(3B)	2.490(3)
Cd(1)-O(4B)	2.346(2)	Cd(1)-O(7)	2.322(3)
Cd(1)-N(3)	2.266(3)	Cd(1)-N(6A)	2.342(3)
O(1)-Cd(1)-O(3B)	146.31(8)	O(1)-Cd(1)-O(4B)	92.40(9)
O(1)-Cd(1)-O(7)	85.78(10)	O(4B)-Cd(1)-O(3B)	54.07(8)
O(7)-Cd(1)-O(3B)	96.30(10)	O(7)-Cd(1)-O(4B)	90.01(10)
O(1)-Cd(1)-N(3)	129.98(10)	N(3)-Cd(1)-O(3B)	83.68(9)
N(3)-Cd(1)-O(4B)	137.58(9)	N(3)-Cd(1)-O(7)	91.23(10)
O(1)-Cd(1)-N(6A)	88.19(10)	N(6A)-Cd(1)-O(3B)	86.19(10)
N(6A)-Cd(1)-O(4B)	85.64(10)	O(7)-Cd(1)-N(6A)	172.41(10)
N(3)-Cd(1)-N(6A)	96.18(11)		
		2	
Cd(1)-O(1)	2.295(5)	Cd(1)-O(2)	2.608(6)
Cd(1)-O(4A)	2.267(5)	Cd(1)-O(5)	2.310(5)
Cd(1)-N(3)	2.293(5)	Cd(1)-N(6B)	2.336(6)
O(1)-Cd(1)-O(2)	52.46(15)	O(4A)-Cd(1)-O(1)	92.10(19)
O(1)-Cd(1)-O(5)	89.12(18)	O(4A)-Cd(1)-O(2)	144.45(17)
O(5)-Cd(1)-O(2)	94.31(18)	O(4A)-Cd(1)-O(5)	86.9(2)
N(3)-Cd(1)-O(1)	133.8(2)	N(3)-Cd(1)-O(2)	81.53(19)
O(4A)-Cd(1)-N(3)	134.0(2)	N(3)-Cd(1)-O(5)	90.96(19)

Table S1 Selected bond lengths [Å] and angles [°] for 1-9

O(1)-Cd(1)-N(6B)	85.4(2)	N(6B)-Cd(1)-O(2)	84.5(2)	
O(4A)-Cd(1)-N(6B)	90.5(2)	5(2) O(5)-Cd(1)-N(6B)		
N(3)-Cd(1)-N(6B)	94.8(2)			
		3		
Cd(1)-O(1)	2.483(2)	Cd(1)-O(3A)	2.543(2)	
Cd(1)-O(4A)	2.259(2)	Cd(1)-O(6)	2.269(3)	
Cd(1)-O(1B)	2.416(2)	Cd(1)-O(2B)	2.438(2)	
Cd(1)-N(3)	2.275(2)			
O(1)-Cd(1)-O(3A)	105.88(7)	O(4A)-Cd(1)-O(1)	90.50(7)	
O(6)-Cd(1)-O(1)	166.13(10)	O(1B)-Cd(1)-O(1)	73.40(8)	
O(2B)-Cd(1)-O(1)	101.33(7)	O(4A)-Cd(1)-O(3A)	53.88(7)	
O(6)-Cd(1)-O(3A)	84.58(9)	O(1B)-Cd(1)-O(3A)	176.13(6)	
O(2B)-Cd(1)-O(3A)	129.70(7)	O(4A)-Cd(1)-O(6)	103.14(10)	
O(4A)-Cd(1)-O(1B)	129.68(7)	O(4A)-Cd(1)-O(2B)	84.87(7)	
O(6)-Cd(1)-O(1B)	95.54(9)	O(6)-Cd(1)-O(2B)	77.76(8)	
O(1B)-Cd(1)-O(2B)	53.98(7)	N(3)-Cd(1)-O(1)	85.82(8)	
N(3)-Cd(1)-O(3A)	86.71(8)	O(4A)-Cd(1)-N(3)	137.65(8)	
O(6)-Cd(1)-N(3)	85.72(9)	N(3)-Cd(1)-O(1B)	89.43(8)	
N(3)-Cd(1)-O(2B)	137.21(8)			
		4		
Cd(1)-N(3)	2.319(3)	Cd(1)-N(6A)	2.334(3)	
Cd(1)-N(9)	2.324(3)	Cd(1)-N(12B)	2.341(3)	
Cd(1)-O(8)	2.288(3)	Cd(1)-O(9)	2.334(3)	
N(3)-Cd(1)-N(6A)	90.71(10)	N(3)-Cd(1)-N(9)	175.29(11)	
N(3)-Cd(1)-N(12B)	90.31(9)	N(9)-Cd(1)-N(6A)	87.50(10)	
N(6A)-Cd(1)-N(12B)	176.77(10)	N(9)-Cd(1)-N(12B)	91.24(10)	
O(8)-Cd(1)-N(3)	87.15(10)	O(8)-Cd(1)-N(6A)	86.99(11)	
O(8)-Cd(1)-N(9)	88.40(11)	O(8)-Cd(1)-N(12B)	90.00(10)	
N(3)-Cd(1)-O(9)	85.81(10)	N(6A)-Cd(1)-O(9)	90.99(10)	
N(9)-Cd(1)-O(9)	98.57(11)	O(9)-Cd(1)-N(12B)	92.14(10)	
O(8)-Cd(1)-O(9)	172.66(10)			
		5		
Cd(1)-O(1)	2.376(4)	Cd(1)-O(2)	2.410(3)	
Cd(1)-O(3)	2.377(4)	Cd(1)-O(4A)	2.235(3)	
Cd(1)-O(5)	2.289(4)	Cd(1)-N(3)	2.301(4)	
O(1)-Cd(1)-O(2)	54.32(13)	O(1)-Cd(1)-O(3)	85.09(15)	
O(4A)-Cd(1)-O(1)	86.42(14)	O(5)-Cd(1)-O(1)	94.79(16)	
O(3)-Cd(1)-O(2)	95.31(13)	O(4A)-Cd(1)-O(2)	137.33(13)	
O(5)-Cd(1)-O(2)	84.55(14)	O(4A)-Cd(1)-O(3) 97.39(13		
O(5)-Cd(1)-O(3)	179.85(13)	O(4A)-Cd(1)-O(5)	82.69(15)	
N(3)-Cd(1)-O(1)	141.73(14)	N(3)-Cd(1)-O(2) 88.57(13)		
N(3)-Cd(1)-O(3)	90.04(13)	O(4A)-Cd(1)-N(3)	131.83(14	
O(5)-Cd(1)-N(3)	90.01(15)			

Cd(1)-O(1)	2.452(4)	Cd(1)-O(2) 2.397(3		
Cd(1)-O(3A)	2.521(4)	Cd(1)-O(4A)	2.328(3)	
Cd(1)-O(5)	2.299(4)	Cd(1)-N(3)	2.315(4)	
Cd(1)-N(6B)	2.349(4)			
O(2)-Cd(1)-O(1)	53.91(11)	O(1)-Cd(1)-O(3A)	134.25(12)	
O(4A)-Cd(1)-O(1)	169.53(13)	O(5)-Cd(1)-O(1)	78.97(17)	
O(2)-Cd(1)-O(3A)	82.27(12)	O(4A)-Cd(1)-O(2)	135.67(12)	
O(5)-Cd(1)-O(2)	87.83(16)	O(4A)-Cd(1)-O(3A)	53.93(13)	
O(5)-Cd(1)-O(3A)	87.83(15)	O(5)-Cd(1)-O(4A)	96.08(17)	
N(3)-Cd(1)-O(1)	99.54(14)	N(3)-Cd(1)-O(2)	88.43(13)	
N(3)-Cd(1)-O(3A)	90.75(13)	N(3)-Cd(1)-O(4A)	85.95(14)	
O(5)-Cd(1)-N(3)	176.15(16)	N(6B)-Cd(1)-O(1)	87.46(13)	
N(6B)-Cd(1)-O(2)	141.21(13)	N(6B)-Cd(1)-O(3A) 136.0		
O(4A)-Cd(1)-N(6B)	83.12(14)	O(5)-Cd(1)-N(6B)	87.99(17)	
N(3)-Cd(1)-N(6B)	95.51(15)			
		7		
Cd(1)-O(1)	2.442(2)	Cd(1)-O(2)	2.2715(19)	
Cd(1)-N(1)	2.263(2)			
O(2)-Cd(1)-O(1)	55.38(7)	O(1A)-Cd(1)-O(1)	85.09(11)	
O(2A)-Cd(1)-O(1)	108.31(7)	O(2)-Cd(1)-O(1A)	108.31(7)	
O(2A)-Cd(1)-O(2)	160.14(10)	O(2A)-Cd(1)-O(1A)	55.38(7)	
N(1)-Cd(1)-O(1)	136.85(7)	N(1A)-Cd(1)-O(1)	99.43(8)	
N(1)-Cd(1)-O(1A)	99.43(8)	N(1A)-Cd(1)-O(1A)	136.85(7)	
N(1)-Cd(1)-O(2)	83.02(8)	N(1A)-Cd(1)-O(2)	109.31(8)	
N(1)-Cd(1)-O(2A)	109.31(8)	N(1A)-Cd(1)-O(2A)	83.02(7)	
N(1)-Cd(1)-N(1A)	105.36(12)			
		8		
Cd(1)-O(1)	2.2605(19)	Cd(1)-O(2)	2.6330(18)	
Cd(1)-O(3A)	2.4233(18)	Cd(1)-O(4A)	2.4295(18)	
Cd(1)-O(7)	2.307(3)	Cd(1)-O(8)	2.292(2)	
Cd(1)-N(2)	2.308(2)			
O(1)-Cd(1)-O(2)	53.00(6)	O(1)-Cd(1)-O(3A)	129.76(6)	
O(1)-Cd(1)-O(4A)	76.85(6)	O(1)-Cd(1)-O(7)	96.49(9)	
O(1)-Cd(1)-O(8)	88.88(9)	O(3A)-Cd(1)-O(2)	176.74(6)	
O(4A)-Cd(1)-O(2)	128.34(6)	O(7)-Cd(1)-O(2)	89.46(8)	
O(8)-Cd(1)-O(2)	84.44(7)	O(3A)-Cd(1)-O(4A)	53.88(6)	
O(7)-Cd(1)-O(3A)	88.44(8)	O(8)-Cd(1)-O(3A)	97.12(7)	
O(7)-Cd(1)-O(4A)	84.18(8)	O(8)-Cd(1)-O(4A)	108.47(7)	
O(8)-Cd(1)-O(7)	167.14(9)	O(1)-Cd(1)-N(2) 150.14(7		
N(2)-Cd(1)-O(2)	97.17(7)	N(2)-Cd(1)-O(3A) 80.03(7)		
N(2)-Cd(1)-O(4A)	131.62(7)	O(7)-Cd(1)-N(2)	80.33(9)	
O(8)-Cd(1)-N(2)	89.19(9)			
		9		
Cd(1)-O(1)	2.286(2)	Cd(1)-O(2)	2.611(3)	

Cd(1)-O(3A)	2.229(3)	Cd(1)-O(5B)	2.290(3)
Cd(1)-N(1)	2.243(3)	Cd(1)-N(5C)	2.340(3)
Cd(2)-O(1)	2.348(2)	Cd(2)-O(1F)	2.348(2)
Cd(2)-O(4A)	2.213(3)	Cd(2)-O(4D)	2.213(3)
Cd(2)-N(4C)	2.325(3)	Cd(2)-N(4E)	2.325(3)
O(1)-Cd(1)-O(2)	53.02(9)	O(3A)-Cd(1)-O(1)	109.26(10)
O(1)-Cd(1)-O(5B)	94.69(10)	O(3A)-Cd(1)-O(2)	160.11(9)
O(5B)-Cd(1)-O(2)	103.26(10)	O(3A)-Cd(1)-O(5B)	85.85(11)
N(1)-Cd(1)-O(1)	140.79(11)	N(1)-Cd(1)-O(2)	88.27(11)
O(3A)-Cd(1)-N(1)	109.95(12)	N(1)-Cd(1)-O(5B)	87.88(11)
O(1)-Cd(1)-N(5C)	87.14(10)	N(5C)-Cd(1)-O(2)	81.62(11)
O(3A)-Cd(1)-N(5C)	89.08(11)	O(5B)-Cd(1)-N(5C)	174.93(11)
N(1)-Cd(1)-N(5C)	93.69(11)		
O(4A)-Cd(2)-O(1)	82.33(10)	N(4C)-Cd(2)-O(1)	84.89(10)
O(4A)-Cd(2)-N(4C)	95.56(11)	O(1)-Cd(2)-O(1F)	180.0
O(4D)-Cd(2)-O(4A)	180.000(1)	N(4E)-Cd(2)-N(4C)	180.000(1)

Symmetry transformations used to generate equivalent atoms: A -x, -y+2, -z+1; B x, y-1, z for 1; A x, y+1, z; B -x, -y+1, -z+1 for 2; A -x+1, -y, -z+1; B -x, -y+1, -z+1 for 3; A x, -y+3/2, z+1/2; B x, -y+3/2, z-1/2 for 4; A -x, -y+2, -z+2 for 5; A -x+1/2, y+1/2, -z+1/2; B -x+1, -y, -z for 6; A -x+1, y, -z+1/2 for 7; A x, y+1, z for 8; A x+1, y+1, z; B -x+1, -y+1, -z+1; C -x+2, -y+1, -z+2; D -x+1, -y, -z+1; E x, y, z-1; F -x+2, -y+1, -z+1 for 9.

D-H A	d(D-H)	d(H A)	D(D A)	<(DHA)
		1		
O(7)-H(1W) O(8) ⁱ	0.834(19)	1.93(2)	2.758(4)	172(4)
O(7)-H(2W) O(3) ⁱ	0.78(5)	1.90(5)	2.685(4)	177(5)
O(8)-H(4W) O(2)	0.834(18)	1.93(2)	2.768(4)	176(4)
		2		
O(5)-H(1W) O(2) ⁱ	0.89(2)	1.83(3)	2.682(7)	159(6)
O(5)-H(2W) O(6)	0.885(19)	2.02(5)	2.735(8)	137(6)
O(6)-H(3W) N(5) ⁱⁱ	0.905(19)	2.22(3)	3.103(8)	165(4)
O(6)-H(4W) O(3) ⁱ	0.903(19)	1.89(3)	2.743(8)	156(5)
		3		
O(5)-H(5) O(2) ⁱ	0.82	2.08	2.844(3)	155.8
O(6)-H(1W) O(7) ⁱⁱ	0.864(18)	1.887(19)	2.744(4)	171(3)
O(6)-H(2W) O(3) ⁱⁱⁱ	0.853(18)	1.86(2)	2.695(3)	164(3)
O(7)-H(3W) O(4)	0.867(18)	1.863(19)	2.729(3)	177(3)
O(7)-H(4W) N(2) ^{iv}	0.863(18)	2.66(3)	3.137(4)	116(3)

Table S2 Hydroger	bondings for 1,	2, 3, 4, 5, 6, 8	3 and 9 (Å and $^{\circ}$)
-------------------	-----------------	------------------	---

$O(2)$ -HW $O(3)^{i}$	0.93(5)	1.62(5)	2.539(3)	170(5)
O(8)-H(1W) O(13)	0.840(18)	1.86(2)	2.693(4)	174(4)
O(8)-H(2W) O(11) ⁱⁱ	0.837(18)	1.90(2)	2.724(4)	170(4)
O(9)-H(3W) O(11) ⁱⁱⁱ	0.838(18)	2.113(19)	2.945(4)	172(4)
O(9)-H(4W) O(7) ^{iv}	0.853(18)	1.89(2)	2.722(4)	16634
O(10)-H(5W) O(4)	0.846(19)	1.96(2)	2.790(4)	166(4)
O(10)-H(6W) O(12)	0.836(19)	2.05(2)	2.881(4)	173(5)
O(11)-H(7W) O(10)	0.835(19)	2.35(5)	2.761(4)	111(4)
$O(12)-H(9W)^{}N(11)^{v}$	0.843(19)	2.14(2)	2.983(4)	176(4)
O(12)-H(10W) O(3) ^{vi}	0.850(19)	2.17(2)	3.006(4)	168(4)
O(13)-H(11W) O(7)	0.864(18)	2.04(3)	2.832(5)	153(4)
O(13)-H(12W) O(7) ⁱⁱⁱ	0.850(18)	2.39(3)	3.150(7)	150(4)
O(13)-H(12W) O(5) ⁱⁱⁱ	0.850(18)	2.43(3)	3.209(6)	152(4)
		5		
$O(5)-H(1W)^{}O(2)^{i}$	0.868(19)	1.87(3)	2.699(5)	160(7)
O(5)-H(2W) O(6)	0.862(19)	1.82(2)	2.680(9)	174(7)
		6		
O(5)-H(1W) O(6)	0.86(2)	1.89(5)	2.606(8)	139(7)
O(5)-H(2W) O(7)	0.84(2)	2.10(4)	2.881(8)	153(7)
O(6)-H(3W) O(10)	0.90(2)	1.83(3)	2.703(8)	165(9)
O(7)-H(5W) O(10) ⁱ	0.86(2)	2.04(4)	2.803(11)	146(6)
O(7)-H(6W) O(8) ⁱⁱ	0.86(2)	2.27(5)	2.748(8)	115(4)
O(8)-H(7W) O(9)	0.88(2)	2.00(5)	2.805(9)	152(10)
O(8)-H(8W) O(1) ⁱⁱⁱ	0.87(2)	1.99(3)	2.846(7)	168(9)
O(9)-H(9W) O(6) ^{iv}	0.89(2)	1.91(4)	2.723(8)	150(7)
$O(9)-H(10W)^{}O(2)^{v}$	0.87(2)	2.07(5)	2.775(6)	137(6)
		8		
O(7)-H(1W) O(4) ⁱ	0.77(3)	2.05(3)	2.809(3)	167(4)
O(7)-H(2W) O(9) ⁱⁱ	0.79(3)	1.97(3)	2.750(4)	169(4)
O(8)-H(3W) O(2) ⁱⁱⁱ	0.79(3)	2.02(3)	2.751(3)	154(3)
O(8)-H(4W) N(3) ⁱⁱⁱ	0.72(2)	2.10(2)	2.821(3)	174(3)
O(9)-H(5W) O(1) ^{iv}	0.77(4)	2.39(4)	2.928(3)	128(4)
O(9)-H(6W) O(4) ^v	0.83(5)	2.14(5)	2.938(4)	160(4)
		9		
O(8)-H(1W) O(7) ⁱ	0.851(19)	2.30(2)	2.757(5)	114.4(18)
O(8)-H(2W) O(8) ⁱⁱ	0.850(19)	2.368(13)	2.843(9)	115.8(11)
O(9)-H(3W) O(2) ⁱ	0.86(2)	2.41(2)	2.964(5)	123(2)
O(9)-H(4W) O(8) ⁱⁱⁱ	0.85(2)	2.02(2)	2.867(7)	174(7)

Symmetry transformations used to generate equivalent atoms: i -x+1/2, -y+5/2, -z+1 for 1; i -x+1/2, -y+1/2, -z+1; ii -x+1/2, -y+3/2, -z+1 for 2; i -x, -y+1, -z+2; ii -x, -y, -z+1; iii x-1, y, z; iv -x, -y, -z+2 for 3; i -x+2, y-1/2, -z-1/2; ii x, -y+5/2, z+1/2; iii -x+1, -y+2, -z; iv x, -y+3/2, z+1/2; v -x+2, y+1/2, -z+1/2; vi -x+2, y+1/2, -z-1/2; vi -x+2, y+1/2, -z+1/2; vi -x+1, -y+1, -z; v -x+1/2, -z+1/2; vi -x+1, -z+1, -z+1/2; -z+1/

ii x-1, y+1, z; iii -x, -y+2, -z+1; iv x, y-1, z for **8**; i -x+2, -y+1, -z+1; ii -x+3, -y+2, -z+2; iii -x+3, -y+2, -z+1 for **9**.

Fig. S1 The coordination environment of the Cd(II) atom in 1.

Fig. S2 The coordination environment of the Cd(II) atom in 2.

Fig. S3 The coordination environment of the Cd(II) atom in 3.

Fig. S4 The coordination environment of the Cd(II) atom in 4.

Fig. S5 The coordination environment of the Cd(II) atom in 5.

Fig. S6 The coordination environment of the Cd(II) atoms in 6.

Fig. S7 The coordination environment of the Cd(II) atoms in 7.

Fig. S8 The coordination environment of the Cd(II) atoms in 8.

Fig. S9 The coordination environment of the Cd(II) atoms in 9.

Fig. S10 The TG curves of compounds 1-9.