Supporting information

Thermal Behavior

The thermal properties of crystals I-IV were investigated by DSC and TGA experiments (Figure 1S). Crystal I shows only one endothermic peak at $214^{\circ} \mathrm{C}$ (onset temperature: $211^{\circ} \mathrm{C}$) in its DSC pattern. In addition, TGA experiment indicates that the weight loss begins at around $214{ }^{\circ} \mathrm{C}$, suggesting that APAP melts with concomitant decomposition.

Crystal II shows two endothermic peaks at 102 and $213{ }^{\circ} \mathrm{C}$ and the TGA analysis suggests it loses weight in two steps. The first endotherm at $102{ }^{\circ} \mathrm{C}$ is ascribed to the removal of chloroform molecules and the weight loss (24.11\%) from 80 to $120^{\circ} \mathrm{C}$ also coincides with the expected weight loss of 24.67% corresponding to the 1:1 APAP•chloroform system. The second endotherm and the second step of weight loss are in agreement with that of crystal I, and analysis of PXRD pattern of the residue after desovlation (Figure 2 S) revealed that it also matched with crystal I, indicating the residue possesses the same structure with crystal I.

Similarly, crystal III also shows two endothermic peaks and two steps of weight loss. The first endotherm at $138{ }^{\circ} \mathrm{C}$ is ascribed to the removal of phenol molecules, and the weight loss $(20.24$ \%) from 80 to $145{ }^{\circ} \mathrm{C}$ also coincides with the expected weight loss of 20.52% corresponding to the 1:1 APAP•phenol system. The other changes in DSC and TGA curves are also in agreement with that of crystal I, indicating the same phase is obtained after removal of phenol.

However, crystal IV shows a board endothermic peak at $221^{\circ} \mathrm{C}$, which is different from the two starting components, suggesting the formation of a new phase. Moreover, the TGA curve indicates the weight loss begins before appearance of the endothermic peak, which may be relative to the low melting point and thermal stability of BPA.

Figure 1S. DSC (a) and TGA (b) profiles of crystals I-IV.

Figure 2S. PXRD patterns of the residue (a) and crystal I (b).

FT-IR Spectroscopy

To investigate the non-covalent interactions within these crystals, their FT-IR spectra were recorded (Figure 3S). For the carbonyl groups of APAP, the vibrational absorption maximum in crystals I-IV are $1666,1648,1633$ and $1627 \mathrm{~cm}^{-1}$, respectively. This result indicates that the different strength of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ or $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions between APAP and the guest molecules exert different influence on the vibrational properties of APAP. For our system, with decrease of the distance between the hydrogen atom and accepter $(\mathrm{H} \cdot \mathrm{A}$, Table 2), the values are shifted to lower frequencies.

Figure 3S. FT-IR spectra of crystals I-IV.

Figure 4S. ${ }^{1} \mathrm{H}$ NMR spectrum of APAP.
Assignments of each H in the NMR spectrum: $\delta(\mathrm{ppm}) 2.35\left(\mathrm{CO}_{\mathrm{CH}}^{3}\right), 3.48-3.54\left(\right.$ one H of $\left.\mathrm{CH}_{2}\right)$, 3.88-3.94 (another H of $\left.\mathrm{CH}_{2}\right)$, 6.85-6.90 $(\mathrm{CH}), 7.31-8.52(14 \mathrm{H}$, Ar-H from anthracne and benzene rings).

Figure 5S. ${ }^{13} \mathrm{C}$ NMR spectrum of APAP
Assignments of C in the NMR spectrum: $\delta(\mathrm{ppm}) 21.79\left(\mathrm{C}^{*}-\mathrm{CO}\right), 41.61\left(\mathrm{CH}_{2}\right), 55.98(\mathrm{CH}-\mathrm{N})$, 122.83-131.83 (the rest Ar-C from pyrene and benzene rings), $153.80(\mathrm{C}=\mathrm{N}), 169.46(\mathrm{C}=\mathrm{O})$.
(21.79 is assigned to C^{*}).

crystal V

Figure 6S . Thermal ellipsoid plots of crystals I-V at 20\% probability.

Figure 7S . UV-Vis spectra of APAP in various solvents.

Figure 8S. Fluorescence spectra of APAP in various solvents $\left(\lambda_{\mathrm{ex}}=365 \mathrm{~nm}\right)$.

Figure 9S. Excitation spectra for crystals I-IV.

Figure 10S. Fluorescence decay curves for crystals I-IV (fluorescence lifetimes were monitored at 340 nm).

Table 1S. Intermolecular hydrogen bonds parameters in crystals I-V.

crystal	D-H (\AA)	$\mathrm{H}^{\cdots} \mathrm{A}(\AA)$	D $\cdots \mathrm{A}(\AA)$	$\left.\angle \mathrm{D}-\mathrm{H}^{\cdots} \mathrm{A}{ }^{(}{ }^{\circ}\right)$
II				
C26-H26A \cdots O1	0.98	2.09	3.040(6)	161.70
III				
O2-H2C \cdots O1	0.82	1.91	2.727(8)	174.40
C8-H8B \cdots O1	0.97	2.43	3.272(10)	145.49
IV				
O2-H2C \cdots O1	0.82	1.82	2.640 (3)	177.33
O3-H3B $\cdots 2$	0.82	1.87	$2.646(4)$	158.69
C2-H2B $\cdots 3$	0.93	2.43	$3.235(5)$	144.97
C27-H27A \cdots O1	0.93	2.52	$3.190(4)$	128.84
V				
O2-H2B \cdots O1	0.85	2.41	2.800(4)	108.71
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O} 1$	0.85	2.43	2.800(4)	106.79

Table 2S. $\pi-\pi$, C-H $\cdots \pi$ and C-Cl $\cdots \pi$ interactions in the crystals I-V.

crystal	interaction	distance $(\AA)^{[a]}$	distance $(\AA)^{[b]}$	Angle (${ }^{\circ}$) ${ }^{[\mathrm{c}]}$
I				
	anthracene \cdots anthracene ${ }^{[d]}$	5.414	3.232	0
II				
	C19-H19B \cdots anthracene	2.88		152
	C2-H2A \cdots anthracene	3.04		154
	C26-C11 \cdots anthracene	3.913(3)		84.7(2)
	C26-Cl3 \cdots anthracene	3.822(3)		104.4(2)
III				
	C28-H28A \cdots anthracene	2.98		120
	C14-H14A \cdots anthracene	2.97		147
	benzene \cdot anthracene	$3.908(5)$		11.4(4)
IV				
	C26-H26A \cdots anthracene	3.00		132
	C30-H30A \cdots anthracene	2.96		132
	C11-H11A \cdots benzene	2.70		152
	C34-H34C \cdots anthracene	2.63		156
V				
	C19-H19B \cdots anthracene	2.88		153
	benzene \cdots benzene	3.920(2)	3.354(3)	0

[a] The distances were measured from the centre to the centre of the aromatic rings (for $\pi-\pi$ interactions) or from hydrogen atom to the centre of the aromatic ring (for C-H $\cdots \pi$ interaction); $[\mathrm{b}]$ interplanar separation between the aromatic rings (for $\pi-\pi$ interactions); [c] The angles were measured between the planes of the aromatic rings (for π π interactions) and $\mathrm{C}-\mathrm{H}^{\cdots}$ centre (for $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interaction); [d] is the whole anthracene ring, the rest is one sixmembered ring of the anthracene.

