Supporting information for

A Family of three magnetic metal organic frameworks, their synthesis, structural, magnetic and vapour adsorption study

Suresh Sanda, Soumyabrata Goswami, Himanshu Sekhar Jena, Srinivasulu Parshamoni, and Sanjit Konar*

Department of Chemistry, IISER Bhopal, Bhopal-462023, India. Fax: 91-7556692392; Tel:

91-7556692339; E-mail: skonar@iiserb.ac.in.

Fig. S1. Diffused Reflectance Spectra of compounds 1-3.

Fig. S2. Asymmetric unit of compound **1** (30% probability of ellipsoid). Colour code. Cobalt(magenta), Oxygen(red), Nitrogen(blue), Carbon(light grey), Sulphur(yellow).

Fig. S3. Asymmetric unit of compound **2** (30% probability of ellipsoid) (solvent molecules are removed for clarity). Colour code. Nickel(green), Oxygen(red), Nitrogen(blue), Carbon(light grey), Sulphur(yellow).

Fig. S4. Illustration of co-ordination environment around Ni(II) centre found in compound 2. Colour code. Nickel(green), Oxygen(red), Nitrogen(blue).

Fig. S5. Centro-symmetric dimer found in compound 2. Colour code. Nickel(green), Nitrogen(blue), Carbon(light grey), Sulphur(yellow).

Fig. S6. Hydrogen bonding interactions in compound 2.

Fig. S7. Asymmetric unit of compound **3** (30% probability of ellipsoid). (solvent molecules are omitted for clarity). Colour code. Copper(cyan), Oxygen(red), Nitrogen(blue), Carbon(light grey), Sulphur(yellow).

Fig. S8. Illustration of 3D networks found in 3 through H-bonding interaction between 2D layers through solvated water molecules. Colour code. Copper(cyan), Oxygen(red), Nitrogen(blue), Carbon(light grey), Sulphur(yellow).

Fig. S9. TGA plot of compounds 1-3.

Fig. S10. PXRD patterns of compound 1; Simulated (red), As-synthesized (green).

Fig. S11. PXRD patterns of compound 2; Simulated (red), As-synthesized (green).

Fig. S12. PXRD patterns of compound 3; Simulated (red), As-synthesized (green).

Fig. S13. Temperature dependence of the FC and ZFC susceptibility (χ_M) of **1** at 0.1 T. Inset shows temperature dependence of $1/\chi_M$. The red solid line represents the Curie-Weiss fitting to the curve.

Fig. S14. Temperature dependence of the FC and ZFC susceptibility (χ_M) of 2 at 0.01 T. Inset shows temperature dependence of $1/\chi_M$. The red solid line represents the Curie-Weiss fitting to the curve.

Fig. S15. M/N μ_B vs H curve for 2 recorded at 2 K.

Fig. S16. Temperature dependence of the FC and ZFC susceptibility (χ_M) of **3** at 0.01 T. Inset shows temperature dependence of $1/\chi_M$. The red solid line represents the Curie-Weiss fitting to the curve.

Fig. S17. N₂ adsorption isotherms of compounds 1-3 at 77 K. 1(green), 2(red), 3(magenta).

Fig. S18. CO₂ adsorption isotherms of compounds 1-3 at 195 K. 1(red), 2(green), 3(magenta).

Fig. S19. CO₂ adsorption isotherms of compounds 1-3 at 298 K. 1(magenta), 2(green), 3(red).

Fig. S20. H₂ sorption isotherms of compounds 1-3 at 77 K. 1(magenta), 2(green), 3(red).

Fig. S21. PXRD pattern of water adsorbed sample of compound 1; As-synthesized (green), H₂O adsorbed (red).

Fig. S22. PXRD pattern of water adsorbed sample of compound 2; As-synthesized (green), H₂O adsorbed (red).

Fig. S23. PXRD pattern of water adsorbed sample of compound 3; As-synthesized (green), H₂O adsorbed (red).

1		2			3	
Co1-O1	2.029(3)	Ni1-N1	2.09(1)	Cu1-N2	2.002(3)	
Co1-N1	2.139(3)	Ni1-O3	2.076(8)	Cu1-O4	2.542(4)	
Co1-O3	2.160(5)	Ni1-N2	2.09(1)	Cu1-N1	2.020(3)	
O1-Co1-N1	92.4(1)	O2-Ni1-O6	89.8(4)	N2-Cu1-O4	93.3(1)	
O1-Co1-O3	88.9(2)	O2-Ni1-O5	87.1(4)	N2-Cu1-N2	91.7(1)	
01-Co1-N1	88.4(1)	O2-Ni1-N1	89.4(4)	N2-Cu1-N1	88.7(1)	
O1-Co1-O3	90.3(2)	O2-Ni1-O3	178.4(4)	N2-Cu1-N1	171.2(1)	
01-Co1-O1	178.8(1)	O2-Ni1-N2	92.0(4)	N2-Cu1-O4	84.6(1)	
N1-Co1-O3	87.3(2)	O6-Ni1-O5	87.0(4)	O4-Cu1-N1	86.6(1)	
N1-Co1-N1	96.2(1)	O6-Ni1-N1	177.4(4)	O4-Cu1-N1	95.5(1)	
N1-Co1-O3	175.7(2)	O6-Ni1-O3	89.8(4)	O4-Cu1-O4	177.0(1)	
O3-Co1-O3	89.4(2)	O6-Ni1-N2	87.5(4)	N1-Cu1-N1	92.2(1)	
		O5-Ni1-N1	90.5(4)			
		O5-Ni1-O3	91.8(4)			
		O5-Ni1-N2	174.5(4)			
		N1-Ni1-O3	91.0(4)			
		N1-Ni1-N2	95.0(5)			
		O3-Ni1-N2	89.1(4)			

Table S1. Selected bond lengths (Å) and bond angles (deg) of compounds 1-3.

	D-H····A	D-H (Å)	$H \cdots A(Å)$	$D \cdots A(Å)$	<d-h-a(°)< th=""></d-h-a(°)<>
1	$O(2) \cdots O(2A)^{a}$	-	-	2.975(6)	-
	$O(2) \cdots O(3)^b$	-	-	2.586(7)	-
	$C(1)$ - $H(1)$ ···· $O(2)^{c}$	0.93	2.690	3.531(7)	150.9(3)
	O(1) ···O(6)	-	-	2.63(1)	-
	O(3) ···O(5)	-	-	3.00(1)	-
	O(3) ···O(6)	-	-	2.97(1)	-
	O(3) ···O(11)	-	-	2.84(2)	-
	$O(4) \cdots O(5)$	-	-	2.66(1)	-
	$O(4) \cdots O(7)$	-	-	2.62(2)	-
	$O(5) \cdots O(10)$	-	-	2.77(2)	-
	O(6) ··· O(8)	-	-	2.82(1)	-
2	$O(6) \cdots O(9)$	-	-	2.88(2)	-
	O(7) ··· O(7A)	-	-	2.02(3)	-
	O(7) ··· O(9)	-	-	2.92(3)	-
	O(8) ···O(9)	-	-	2.96(3)	-
	O(9) ···O(13)	-	-	2.81(4)	-
	O(10) ····O(11)	-	-	2.78(2)	-
	O(10) ··· O(13)	-	-	2.86(3)	-
	O(11) ····O(12)	-	-	2.75(3)	-
	O(12) ····O(13)	-	-	2.70(5)	-
3	O(5) ···O(5A)	-	-	2.726(4)	-
	$O(3) \cdots O(5)$	-	-	2.671(5)	-
	$O(3) \cdots S(2)$	-	-	3.014(3)	-
	$C(2)$ - $H(2)$ ···· $O(1)^d$	0.93	2.44	3.285(5)	151
	C(4)- $H(4)$ ···· $S(1)$	0.93	2.73	3.200(3)	112
	$C(6)-H(6)\cdots S(2)$	0.93	2.73	3.212(3)	113
	$C(6)-H(6)\cdots O(1)$	0.93	2.45	3.241(6)	143
	$C(8)$ - $H(8)$ ···· $O(5)^e$	0.93	2.48	3.374(5)	161
	$C(9)$ - $H(9)$ ···· $O(3)^{f}$	0.93	2.57	3.331(5)	139
	$C(9)$ - $\overline{H(9)}$ ···· $O(4)^g$	0.93	2.47	2.978(5)	115
	$C(13)-H(13)\cdots O(1)$	0.93	2.34	2.698(6)	103

Table S2.	H-bonding	table of	compounds 1	-3.

Symmetry: ^a x, -y+1/4, -z+1/4; ^b-x+3/4, -y+3/4, +z; ^c x, -y+1/4, -z+1/4; ^d-x, 1-y, 1-z; ^e1-x, y, 1/2-z; ^f1+x, 1+y, z; ^g-x, 1+y, 1/2-z.