Supporting Information

Coligand phenylacetic acid effect on structure and magnetic property of azido-bridged copper(II)-chains compounds

Lan Yang,^a Sheng Zhang,^a Xiangyu Liu,^{a,b} Qi Yang,^a Qing Wei,^a Gang Xie,^a Sanping Chen*^a

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China

^b School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Corresponding author

Dr. Sanping Chen

Tel.: +8602988302604

Fax: +8602988302604

E-mail: sanpingchen@126.com; sanpingchen@126.c

 $\label{eq:stable} \textbf{Table S1.} \quad \text{Selected bond lengths } [\text{\AA}] \text{ and angles } [^\circ] \text{ for compound } \textbf{1}.$

Tuble B1. Selected	oona lenguis [i	j und ungles [] for compo	und I.
O(2)-Cu(1)#1	1.942(2)	O(2)#2-Cu(1)-N(1)#2	93.29(10)
Cu(1)-O(1)	1.925(2)	N(1)-Cu(1)-N(1)#2	175.42(2)
Cu(1)-O(2)#2	1.942(2)	O(1)-Cu(1)-O(5)	91.56(10)
Cu(1)-O(5)	2.419(3)	C(8)-O(2)-Cu(1)#1	129.3(2)
Cu(1)-N(1)	2.003(2)	O(2)#2-Cu(1)-O(5)	93.05(10)
Cu(1)-N(1)#2	2.019(2)	N(1)-Cu(1)-O(5)	85.26(11)
N(1)-Cu(1)#1	2.019(2)	N(1)#2-Cu(1)-O(5)	96.75(11)
N(1)-N(2)	1.214(4)	C(8)-O(1)-Cu(1)	134.5(2)
N(2)-N(3)	1.133(4)	N(2)-N(1)-Cu(1)	120.7(2)
O(1)-Cu(1)-O(2)#2	175.30(10)	N(2)-N(1)-Cu(1)#1	116.2(2)
O(1)-Cu(1)-O(2)#2	88.77(10)	Cu(1)-N(1)-Cu(1)#1	110.40(12)
O(1)-Cu(1)-N(1)	90.70(10)	N(3)-N(2)-N(1)	177.70(4)
O(2)#2-Cu(1)-N(1)	87.07(10)		

Symmetry transformations used to generate equivalent atoms:

$\pi 1 = \mathbf{A} + 1/\mathbf{\Delta}, \mathbf{V} + 1/\mathbf{\Delta}, \mathbf{Z} + 1/\mathbf{\Delta}$ $\pi \mathbf{\Delta} = \mathbf{A} + 1/\mathbf{\Delta}, \mathbf{V} = 1/\mathbf{\Delta}, \mathbf{Z} + 1/\mathbf{\Delta}$	#1	-x+1/2.y+1/2z+1/2	$#2 - x + 1/2 \cdot y - 1/2 \cdot - z + 1/2$
---	----	-------------------	--

Table S2. Selected bond lengths [Å] and angles [°] for compound 2.							
Cu(1)-O(1)#1	1.917(10)	O(1)-Cu(1)-N(1)#1	88.5(5)				
Cu(1)-O(1)	1.917(10)	N(1)-Cu(1)-N(1)#1	180.0(1)				
Cu(1)-N(1)	1.917(11)	O(2)#2-Cu(2)-O(2)	180.0(2)				
Cu(1)-N(1)#1	1.917(11)	O(2)#2-Cu(2)-N(1)	88.7(4)				
Cu(2)-O(2)#2	1.934(10)	O(2)-Cu(2)-N(1)	91.3(4)				
Cu(2)-O(2)	1.934(10)	O(2)#2-Cu(2)-N(1)#2	91.3(4)				
Cu(2)-N(1)	1.993(11)	O(2)-Cu(2)-N(1)#2	88.7(4)				
Cu(2)-N(1)#2	1.993(11)	N(1)-Cu(2)-N(1)#2	180.0(1)				
N(1)-N(2)	1.189(16)	C(1)-O(1)-Cu(1)	134.6(10)				
N(2)-N(3)	1.160(18)	C(1)-O(2)-Cu(2)	135.3(9)				
O(1)#1-Cu(1)-O(1)	180.0(2)	N(2)-N(1)-Cu(1)	121.3(10)				
O(1)#1-Cu(1)-N(1)	88.5(5)	N(2)-N(1)-Cu(2)	117.7(9)				
O(1)-Cu(1)-N(1)	91.5(5)	Cu(1)-N(1)-Cu(2)	120.4(6)				
O(1)#1-Cu(1)-N(1)#1	91.5(5)	N(3)-N(2)-N(1)	178.0(2)				
Symmetry tran	Symmetry transformations used to generate equivalent atoms:						
#1 -x+1,-y+2,-z+1 #2 -x,-y+2,-z+1							

Table S3. Selected bond lengths [Å] and angles [°] for compound 3.							
Cu(1)-O(12)#1	1.926(4)	O(1)-Cu(1)-N(3)	94.0(2)				
Cu(1)-O(1)	1.960(4)	O(12)#1-Cu(1)-N(3)#1	93.0(2)				
Cu(1)-N(3)	1.973(5)	O(1)-Cu(1)-N(3)#1	90.1(2)				
Cu(1)-N(3)#1	1.979(5)	N(3)-Cu(1)-N(3)#1	152.29(9)				
N(3)-Cu(1)#2	1.979(5)	N(2)-N(1)-N(3)	178.7(7)				
O(12)-Cu(1)#2	1.926(4)	N(1)-N(3)-Cu(1)	118.0(4)				
N(1)-N(2)	1.125(7)	N(1)-N(3)-Cu(1)#2	118.7(4)				
N(1)-N(3)	1.225(8)	Cu(1)-N(3)-Cu(1)#2	122.4(3)				

O(12)#1-Cu(1)-O(1)	164.77(19)	C(9)-O(1)-Cu(1)	129.6(4)
O(12)#1-Cu(1)-N(3)	90.1(2)	C(9)-O(12)-Cu(1)#2	127.6(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,y-1/2,-z+3/2 #2 -x+2,y+1/2,-z+3/2

 Table S4. Structural and magnetic parameters for Cu(II)-azido mixed-bridged compounds.

Year	Unit	Formula	Dimension	Cu-N-Cu(°)	Cu····Cu(Å)	$\chi_{\rm M}T(300 \text{ K})$	$J^a(\text{cm}^{-1})$	Ref.
	2011	$[C_{11}(N_{1}), (N_{1}O_{1}), (I^{-1})]$	1D	110.5			26	17
1997	2Cu	$\{[Cu_2(1V_3)_2(1VO_3)_2(L_2)_2]_n$	1D	117.5	3.78	0.60	75	17
	1Cu	$\left[C_{11}(INO)(N_{2})(H_{2}O)_{n} \right]$	3D	106.6	3.20	0.00	80	10
2006	1Cu	$[Cu(NNO)(N_3)(H_2O)_{0.5]n}$	2D	124.3	3.52	0.04	48	100
2000	1.5Cu	$[Cu, (N_1), (isonic)]$	2D 3D	106.7	3.32	1.40	80	21 <i>a</i>
	2Cu	$[Cu_{1.5}(Iv_{3})_2(Isolitc)]_n$	3D	100.7	5.20	1.40	80	210
	3Cu	$[Cu_3((\mathbf{R})-pilea)_2(\mathbf{N}_3)_6]_n$	2D	101.8	3.04	1.27	15.27	21 <i>b</i>
2007	1Cu	$[Cu_3((S)-pilea)_2(N_3)_6]_n$	2D	112.6	2.25	0.54	20.1	21.0
2007	1.50	$[Cu(N_3)(IIIC)]_n$	3D 1D	102.2	2.12	0.34	39.1	210
	1.500	$[Cu_{1.5}(nnta)(N_3)_2(H_2O)]_n$		103.2	3.12	0.80	89	15a
2000	3Cu	$[Cu_3(nnta)_4(N_3)_2(H_2O)_3]_n$	0D	116.2	3.39	1.60	69.7	15 <i>a</i>
2008	icu ac	$[Cu(N_3)(tp)(CH_3OH)]_n$	2D	105.5	3.19	0.54	63	21a
	2Cu	$[Cu_2(4-pya)_2(N_3)_2(DMF)]_n$	2D	102.1	-	0.98	145	106
2000	ICu	$[Cu(benzoate)(N_3)]_n$	ID	126.8	3.54	0.56	33.90	11a
2009	ICu	$[Cu(L^2)(N_3)]_n$	2D	108.2	3.23	0.59	93.10	11a
	1Cu	$[Cu(1-naphthoate)(N_3)]_n$	2D	116.8	3.41	0.61	65.63	11 <i>a</i>
	1Cu	$[Cu(N_3)(p-CPA)]_n$	2D	107.0	3.18	0.52	68.82	22 <i>a</i>
2010	1Cu	$[Cu(2-Clnic)(N_3)(CH_3OH)]_n$	1D	110.3	3.29	-	81.22	22 <i>b</i>
	3Cu	$[Cu_3(pyz)_2(N_3)_6]_n$	2D	100.5	3.09	1.39	118.8	22 <i>c</i>
2011	1Cu	$[Cu(mptz)(N_3)_2]_n$	1D	103.3	3.15	0.48	65.4	22 <i>d</i>
	1Cu	$[Cu(4,3-pybz)(N_3)]_n$	2D	109.4	3.25	0.52	63.9	11 <i>c</i>
	2Cu	$[Cu_2(4,4-pybz)_3(N_3)]_n \cdot 3nH_2O$	3D	101.1	3.08	0.91	93.6	11 <i>c</i>
	4Cu	$[Cu_4(N_3)_8(\text{Me-hmpz})_2]_n$	1D	101.0	3.11	1.66	$J_1=40.57$ $J_2=28.47$	22 <i>e</i>
2012	4Cu	$[Cu_4(N_3)_8(men)_2]_n$	1D	102.2	3.40	1.75	$J_1 = 57.97$ $J_2 = -14.03$	22 <i>e</i>
	5Cu	$[Cu_5(N_3)_{10}(N,N-dmen)_2]_n$	2D	101.6	3.40	1.68	$J_1 = -494.99$ $J_2 = 88.60$	22 <i>e</i>
	5Cu	$[Cu_5(N_3)_{10}(N,N'-dmen)_5]_n$	1D	102.2	3.50	1.67	-	22 <i>e</i>
	4Cu [Cu ₄ (N ₃)	$[C_{12}, (N_{1}), (L^{3})]$	1D	102.9	3.12	1.65	J ₁ =-0.70	22 <i>f</i>
		$[Cu_4(N_3)_8(L^3)_2]_n$	1D	137.1	4.13		J ₂ =64.9	
	4Cu		2D	93.4	3 10	1.60	L = 91.0	22 <i>f</i>
2013		$[Cu_4(N_3)_6(L^4)_2(H_2O)_2]$		102.1	3.10		$J_1 = -81.0$ $J_2 = -112.4$	
		4Cu		108.9	5.22		J2-112.4	
	401			91.8	3.18		J ₁ =-77.9	22£
	τCu	$[Cu_4(N_3)_6(L^5)_2]_n$	1D	102.2	3.09	1.59	J ₂ =129.9	22J

				107.3	3.18			
0	1Cu	$[Cu(o-npa)(N_3)(H_2O)]_n$	1D	110.3	3.30	0.55	35.44	this work
work	1Cu	$[Cu(p-npa)(N_3)]_n$	2D	120.4	3.39	0.40	52.25	this work
	1Cu	$[Cu(p-mpa)(N_3)]_n$	2D	122.4	3.46	0.53	-	this work

 J^a : intrachain coupling.

 $L^1 = Me_3NCH_2CO_2$, Hpht = hydrogen phthalate, INO = isonicotinate *N*-oxide, NNO = nicotinate *N*-oxide, isonic = isonicotinate, phea = 1-phenylethylamine, nic = nicotinate, hnta = 6-hydroxynicotinate, tp = terephthalate, 4-Hpya = 4-pyridylacrylic acid, L^2 = 2-methyl-benzoate, *p*-CPAH = *p*-cyanophenoxyacetic acid, 2-Clnic = 2-chloronicotinate, pyz = pyrazine, mptz = *N*-methyl-4-pyridinium tetrazolate, 4,3-pybz = 4-(3-pyridyl)benzoate, 4,4-pybz = 4-(4-pyridyl)benzoate, Me-hmpz = 1-methylhomopiperazine, men = *N*-methylethylenediamine, *N*,*N*-dmen = *N*,*N*-dimethylethylenediamine, *N*,*N*'-dmen = *N*,*N*'-dimethylethylenediamine, L³ is the imine resulting from the condensation of pyridine-2-carboxaldehyde with *N*-methylethylenediamine, HL⁴ and HL⁵ are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with *N*,*N*-diethylethylenediamine and *N*-ethylethylenediamine respectively, *o*-Hnpa = *o*-nitrophenylacetic acid, *p*-Hnpa = *p*-nitrophenylacetic acid, and *p*-Hmpa = *p*-methylphenylacetic acid.

All of the J values were quoted using the Hamiltonian $H = -J \sum S_i \cdot S_{i+1}$.

Fig. S1 The coordination environments of Cu(II) ions in 1(a), 2(b) and 3(c) respectively. H atoms and benzene rings have been omitted for clarity.

Fig. S2 Two adjacent 1D chains are cross-linked by the coordinated nitro groups from the *p*-npa ligands forming the 2D structure of compound 2. H atoms have been omitted for clarity.

Fig. S3 The XRPD diagrams for compounds: (a) 1, (b) 2, and (c) 3.

Fig. S4 Magnetization vs H plot for compound 1.

Fig. S5 Magnetization vs H plot for compound 2.

Fig. S6 χ'_{M} and χ''_{M} *vs T* plots for compound **2**.

Fig. S7 Magnetization vs H plot for compound 3.