Electronic Supplementary Information (ESI)

Three 3D Lanthanide-Organic Frameworks with sra Topology: Syntheses, Structures, Luminescence and Magnetic Properties

Xiaolan Liu,^a Xin Wang,^a Ting Gao,^a Yan Xu,^a Xuan Shen,^a Dunru Zhu^{*,a,b}

^aState Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China, ^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China

Scheme S1 Synthesis of 3,3'-dihydroxy-4,4'-biphenyldicarboxylic acid (H₄L)

1						
Eu1–O1	2.764(5)	Eu1–O2	2.416(5)			
Eu1–O7	2.372(6)	Eu1–O3 ⁱ	2.387(5)			
Eu1–O1 ⁱⁱ	2.384(5)	Eu1–O2 ⁱⁱⁱ	2.359(5)			
Eu1–O5 ⁱⁱⁱ	2.215(5)	Eu1–O4 ^{iv}	2.397(5)			
Eu1…Eu1 ⁱⁱⁱ	3.914(5)	Eu1…Eu1 ⁱⁱ	4.142(5)			
		2				
Gd1–O1	2.773(6)	Gd1–O2	2.424(5)			
Gd1-07	2.348(7)	Gd1–O3 ⁱ	2.363(6)			
Gd1–O1 ⁱⁱ	2.371(6)	Gd1–O2 ⁱⁱⁱ	2.343(6)			
Gd1–O5 ⁱⁱⁱ	2.216(6)	Gd1–O4 ^{iv}	2.385(6)			
$Gd1\cdots Gd1^{iii}$	3.891(6)	$Gd1\cdots Gd1^{ii}$	4.136(6)			
3						
Dy1-O1	2.716(6)	Dy1–O2	2.371(6)			
Dy1–O7	2.336(7)	Dy1–O3 ⁱ	2.343(7)			
Dy1–O1 ⁱⁱ	2.344(6)	Dy1–O2 ⁱⁱⁱ	2.326(6)			
Dy1-O5 ⁱⁱⁱ	2.190(6)	Dy1–O4 ^{iv}	2.357(6)			
$Dy1\cdots Dy1^{iii}$	3.830(6)	Dy1…Dy1 ⁱⁱ	4.061(6)			

Table S1 Selected bond lengths (Å) for LOFs 1-3

Symmetry codes: (i) 3-x, y+1/2, -z-1/2; (ii) 2-x, -y, -z; (iii) 3-x, -y, -z; (iv) x, -y-1/2, z+1/2.

I able S2 Selected bond angles (°) for LOFS I-

		1			
O1–Eu1–O2	49.09(16)	O1–Eu1–O7	87.60(2)	O1–Eu1–O3 ⁱ	75.86(18)
O1–Eu1–O1 ⁱⁱ	73.09(18)	O1–Eu1–O2 ⁱⁱⁱ	117.28(16)	O1–Eu1–O5 ⁱⁱⁱ	171.27(17)
O1–Eu1–O4 ^{iv}	95.52(18)	O2–Eu1–O7	132.10(2)	O2–Eu1–O3 ⁱ	73.35(19)
O1 ⁱⁱ –Eu1–O2	104.32(17)	O2–Eu1–O2 ⁱⁱⁱ	69.90(2)	O2–Eu1–O5 ⁱⁱⁱ	138.88(19)
O2–Eu1–O4 ^{iv}	71.12(19)	O3 ⁱ –Eu1–O7	77.20(2)	O1 ⁱⁱ –Eu1–O7	75.20(2)
O2 ⁱⁱⁱ –Eu1–O7	135.10(2)	O5 ⁱⁱⁱ –Eu1–O7	86.20(2)	O4 ^{iv} –Eu1–O7	143.40(2)
O1 ⁱⁱ –Eu1–O3 ⁱ	138.88(18)	O2 ⁱⁱⁱ –Eu1–O3 ⁱ	74.17(19)	O3 ⁱ –Eu1–O5 ⁱⁱⁱ	108.7(2)
O3 ⁱ –Eu1–O4 ^{iv}	138.88(19)	O1 ⁱⁱ –Eu1–O2 ⁱⁱⁱ	145.05(19)	O1 ⁱⁱ –Eu1–O5 ⁱⁱⁱ	99.33(19)
O1 ⁱⁱ –Eu1–O4 ^{iv}	70.98(19)	O2 ⁱⁱⁱ –Eu1–O5 ⁱⁱⁱ	71.41(18)	O2 ⁱⁱⁱ –Eu1–O4 ^{iv}	74.71(18)
O4 ^{iv} –Eu1–O5 ⁱⁱⁱ	85.80(2)	Eu1–O1–Eu1 ⁱⁱ	106.90(2)	Eu1–O2–Eu1 ⁱⁱⁱ	110.09(2)
		2			
O1-Gd1-O2	49.03(18)	O1-Gd1-O7	88.00(2)	O1–Gd1–O3 ⁱ	76.24(19)
O1–Gd1–O1 ⁱⁱ	73.20(2)	O1–Gd1–O2 ⁱⁱⁱ	117.78(18)	O1–Gd1–O5 ⁱⁱⁱ	170.35(19)
O1–Gd1–O4 ^{iv}	96.30(2)	O2-Gd1-O7	132. 70(2)	O2–Gd1–O3 ⁱ	74.10(2)
O1 ⁱⁱ –Gd1–O2	104.30(2)	O2–Gd1–O2 ⁱⁱⁱ	70.60(2)	O2–Gd1–O5 ⁱⁱⁱ	139.60(2)
O2–Gd1–O4 ^{iv}	71.60(2)	O3 ⁱ –Gd1–O7	77.60(2)	O1 ⁱⁱ –Gd1–O7	74.50(2)
O2 ⁱⁱⁱ –Gd1–O7	134.90(2)	O5 ⁱⁱⁱ –Gd1–O7	85.40(2)	O4 ^{iv} –Gd1–O7	142.50(2)
O1 ⁱⁱ –Gd1–O3 ⁱ	138.90(2)	O2 ⁱⁱⁱ –Gd1–O3 ⁱ	74.20(2)	O3 ⁱ –Gd1–O5 ⁱⁱⁱ	109.00(2)
O3 ⁱ -Gd1-O4 ^{iv}	139.60(2)	O1 ⁱⁱ –Gd1–O2 ⁱⁱⁱ	145.40(2)	O1 ⁱⁱ –Gd1–O5 ⁱⁱⁱ	98.20(2)

O1 ⁱⁱ –Gd1–O4 ^{iv}	71.30(2)	O2 ⁱⁱⁱ –Gd1–O5 ⁱⁱⁱ	71.80(2)	O2 ⁱⁱⁱ –Gd1–O4 ^{iv}	74.80(2)
O4 ^{iv} –Gd1–O5 ⁱⁱⁱ	84.90(2)	Gd1–O1–Gd1 ⁱⁱ	106.81(2)	Gd1–O2–Gd1 ⁱⁱⁱ	109.39(2)
		3			
O1–Dy1–O2	50.06(19)	O1–Dy1–O7	86.40(2)	O1–Dy1–O3 ⁱ	74.60(2)
O1–Dy1–O1 ⁱⁱ	73.50(2)	O1–Dy1–O2 ⁱⁱⁱ	118.00(2)	O1–Dy1–O5 ⁱⁱⁱ	169.00(2)
O1–Dy1–O4 ^{iv}	98.80(2)	O2–Dy1–O7	133.00(2)	O2–Dy1–O3 ⁱ	75.20(2)
O1 ⁱⁱ –Dy1–O2	102.90(2)	O2–Dy1–O2 ⁱⁱⁱ	70.70(2)	O2–Dy1–O5 ⁱⁱⁱ	140.30(2)
O2–Dy1–O4 ^{iv}	71.60(2)	O3 ⁱ –Dy1–O7	76.80(2)	O1 ⁱⁱ –Dy1–O7	75.40(2)
O2 ⁱⁱⁱ –Dy1–O7	134.50(2)	O5 ⁱⁱⁱ –Dy1–O7	84.80(3)	O4 ^{iv} –Dy1–O7	142.40(2)
O1 ⁱⁱ –Dy1–O3 ⁱ	138.50(2)	O2 ⁱⁱⁱ –Dy1–O3 ⁱ	74.30(2)	O3 ⁱ –Dy1–O5 ⁱⁱⁱ	109.50(2)
O3 ⁱ –Dy1–O4 ^{iv}	140.50(2)	O1 ⁱⁱ –Dy1–O2 ⁱⁱⁱ	145.30(2)	O1 ⁱⁱ –Dy1–O5 ⁱⁱⁱ	98.00(2)
O1 ⁱⁱ –Dy1–O4 ^{iv}	70.60(2)	O2 ⁱⁱⁱ –Dy1–O5 ⁱⁱⁱ	72.90(2)	O2 ⁱⁱⁱ –Dy1–O4 ^{iv}	75.10(2)
O4 ^{iv} –Dy1–O5 ⁱⁱⁱ	84.40(3)	Dy1–O1–Dy1 ⁱⁱ	106.56(2)	Dy1–O2–Dy1 ⁱⁱⁱ	109.29(2)

Symmetry codes: (i) 3-x, y+1/2, -z-1/2; (ii) 2-x, -y, -z; (iii) 3-x, -y, -z; (iv) x, -y-1/2, z+1/2.

Table S3 Hydrogen-bonding geometry (Å, °) for LOF 2

D–H…A	d(D–H)	$d(H \cdots A)$	$d(D \cdots A)$	∠D–H…A
O6–H6B…O4	0.82	1.90	2.609(6)	144
$O6-H6B\cdots O1^v$	0.82	2.60	3.276(6)	141
$C15-H15A\cdots O3^{i}$	0.93	2.52	3.093(6)	120
С17-Н17А…О7	0.96	2.38	2.785(6)	105
С19-Н19А…О9	0.96	1.98	2.433(6)	107
C21–H21A…O8	0.96	1.90	2.398(6)	109

Symmetry codes: (i) 3–*x*, *y*+1/2, –*z*–1/2; (v) 2–*x*, *y*–1/2, –*z*–1/2

Table S4 The dihedral angles for ligand (HL)³⁻ in LOFs 1-3

LOE	Two OH groups	SBUs	Dihedral angles (°)		
LOFS			Ph/Ph ring	CO ₂ ²⁻ /Ph ring	
1	One free;	EnO	36.6(1)	$16 A(1) \cdot 1 7(1)$	
	one coordinate	EuO ₈		10.4(1), 1.7(1)	
2	One free;	GdO	37.3(1)	$17.0(1) \cdot 2.1(1)$	
	one coordinate	OuO ₈		17.0(1), 2.1(1)	
3	One free;	DvO.	39.1(1)	$17.7(1) \cdot 2.6(1)$	
	one coordinate	DyO_8		17.7(1), 2.0(1)	

Fig. S1 OPTER drawing (at 50% probability) of the asymmetric unit for LOF **1** (Hydrogen atoms are omitted for clarity).

Fig. S2 ORTEP drawing (at 50% probability) of the asymmetric unit for LOF 2 (Hydrogen atoms are omitted for clarity).

Fig. S3 ORTEP drawing (at 50% probability) of the asymmetric unit for LOF **3** (Hydrogen atoms are omitted for clarity).

Fig. S5 The IR spectra of LOF 2.

Fig. S6 The IR spectra of LOF 3.

Fig. S7 Experimental and simulated powder X-ray diffraction patterns of LOF 1.

Fig. S8 Experimental and simulated powder X-ray diffraction patterns of LOF 2.

Fig. S9 Experimental and simulated powder X-ray diffraction patterns of LOF 3.

Fig. S10 TGA curve for LOF 1.

Fig. S11 TGA curve for LOF 2.

Fig. S13 Variable-temperature susceptibilities for **2** in the form of $\chi_{\rm M}$ and $\chi_{\rm M}^{-1}$ vs. *T* under a field of 100 Oe. The solid red lines were derived from the fitting by the Curie-Weiss law.

Fig. S15 Frequency dependence of the imaginary χ'' components of the AC susceptibilities measured in different DC applied field for **3** in 1.8 K.