Supporting Information

2-D lanthanide organic networks constructed from 6,7-dihydropyrido(2,3-d) pyridazine-5,8-dione: Synthesis, characterization and photoluminescence for sensing small molecules

Waqar Ahmad, Lijuan Zhang*, Yunshan Zhou*

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Scheme S1 Synthesis of $\mathrm{H}_{2} \mathrm{PDH}$.

Figure S1. ${ }^{1} \mathrm{HNMR}$ spectrum of 6, 7-dihydropyrido(2, 3-d)pyridazine-5, 8-dione $\left(\mathrm{H}_{2} \mathrm{PDH}\right)$ ligand at 400 MHz by using $\mathrm{D}_{2} \mathrm{O}$ as solvent.

Figure S2. IR spectra of 6,7-dihydropyrido(2,3-d)pyridazine-5,8-dione $\left(\mathrm{H}_{2} \mathrm{PDH}\right)(\mathrm{a}),\left[\mathrm{Eu}(\mathrm{HPDH})(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathbf{1}$ (b), $\left[\mathrm{Tb}(\mathrm{HPDH})(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 2(\mathrm{c}),\left[\mathrm{Sm}(\mathrm{HPDH})(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathbf{3}(\mathrm{d}),\left[\mathrm{Gd}(\mathrm{HPDH})(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 4$ (e).

Figure S3. Experimental X-ray powder diffraction (XRD) patterns of complex 1(a), complex 2(b), complex 3(c), complex $4(\mathrm{~d})$ and the simulated XRD pattern of complex 1.

Figure S4. The inter and intra 2D layer hydrogen bonding in 3D network in complex $\mathbf{1}$ (the broken red lines). \#1 = $1-x, 2-y, 2-z, \# 2=1-x, 1-y, 2-z, \# 3=-x, 2-y, 2-z, \# 4=1+x,-1+y, 2-z, \# 5=2-x, 1-y, 2-z, \# 6=1+x, y, z$.

Figure S5. The UV spectrum of free $\mathrm{H}_{2} \mathrm{PDH}$ ligand in ethanol (concentration $=1 \times 10^{-4} \mathrm{M}$).

Figure S6. The Phosphorescence spectrum of $\left[\mathrm{Gd}(\mathrm{HPDH})(\mathrm{ox})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] 4$ at 77 K at $\lambda_{\text {exc }}=251 \mathrm{~nm}$.

Figure S7. TG and DTA curves for complexes 1 (a), 2 (b), $\mathbf{3}$ (c), and 4 (d).

Figure S8. The PL spectra of complex 1-solevent emulsions in different solvents at excitation wavelength of 282 nm.

Figure S9. Reproduce ability of the quenching ability of complex $\mathbf{1}$ dispersed in $\mathrm{EtOH}, \mathrm{MeCN}, \mathrm{CHCl}_{3}$ and THF solutions.

Table S1 Dielectric constant, Coordination ability and Reichard's solvent polarity parameters.

Solvent	K	a	E_{T}^{N}
EtOH	24.6	-0.1	0.654
MeOH	32.6	0	0.762
MeCN	37.5	-0.7	0.460
CHCl_{3}	4.81	1.4	0.259
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.08	-0.6	3.1
THF	7.6	0.4	0.207
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	-0.9	0.117	
$\mathrm{None}^{\left(\mathrm{H}_{2} \mathrm{O}\right)}$	7.34	0.6	1.0
EtOAc	-0.8	0.228	
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	-0.5	0.355	
DMF	20.7	0.8	0.386
Dielectric constant $=K$, Coordination ability $=a$, Dimroth-Reichardt $=$	E_{T}^{N}		

