Supporting Information

2-D lanthanide organic networks constructed from 6,7dihydropyrido(2,3-d) pyridazine-5,8-dione: Synthesis, characterization and photoluminescence for sensing small molecules

Waqar Ahmad, Lijuan Zhang*, Yunshan Zhou*

State Key Laboratory of Chemical Resource Engineering, Institute of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China

Scheme S1 Synthesis of H₂PDH.

Figure S1. ¹HNMR spectrum of 6, 7-dihydropyrido(2, 3-*d*)pyridazine-5, 8-dione (H₂PDH) ligand at 400MHz by using D_2O as solvent.

Figure S2. IR spectra of 6,7-dihydropyrido(2,3-d)pyridazine-5,8-dione (H₂PDH) (a), $[Eu(HPDH)(ox)(H_2O)]$ 1 (b), $[Tb(HPDH)(ox)(H_2O)]$ 2 (c), $[Sm(HPDH)(ox)(H_2O)]$ 3 (d), $[Gd(HPDH)(ox)(H_2O)]$ 4 (e).

Figure S3. Experimental X-ray powder diffraction (XRD) patterns of complex 1(a), complex 2(b), complex 3(c), complex 4(d) and the simulated XRD pattern of complex 1.

Figure S4. The inter and intra 2D layer hydrogen bonding in 3D network in complex 1(the broken red lines). #1 = 1-x, 2-y, 2-z, #2 = 1-x, 1-y, 2-z, #3 = -x, 2-y, 2-z, #4 = 1+x, -1+y, 2-z, #5 = 2-x, 1-y, 2-z, #6 = 1+x, y, z.

Figure S5. The UV spectrum of free H₂PDH ligand in ethanol (concentration = 1×10^{-4} M).

Figure S6. The Phosphorescence spectrum of $[Gd(HPDH)(ox)(H_2O)]$ 4 at 77 K at $\lambda_{exc} = 251$ nm.

Figure S7. TG and DTA curves for complexes 1 (a), 2 (b), 3 (c), and 4 (d).

Figure S8. The PL spectra of complex **1**-solevent emulsions in different solvents at excitation wavelength of 282 nm.

Figure S9. Reproduce ability of the quenching ability of complex 1 dispersed in EtOH, MeCN, CHCl₃ and THF solutions.

Solvent	K	a	E_T^N
EtOH	24.6	-0.1	0.654
МеОН	32.6	0	0.762
MeCN	37.5	-0.7	0.460
CHCl ₃	4.81	1.4	0.259
CH_2Cl_2	9.08	-0.6	3.1
THF	7.6	0.4	0.207
$(C_2H_5)_2O$	4.34	-0.9	0.117
None(H ₂ O)	78.54	0.6	1.0
EtOAc	6.02	-0.8	0.228
(CH ₃) ₂ O	20.7	-0.5	0.355
DMF	36.7	0.8	0.386

Table S1 Dielectric constant, Coordination ability and Reichard's solvent polarity parameters.

Dielectric constant = K, Coordination ability = a, Dimroth–Reichardt = E_T^N