Supporting Information for

Synthesis and Structural Characterization of Three 3-D

Aluminogermanates with Different Topologies

Jiahong Wang,^a Yu Zhang,^b Zaichao Zhang^b and Yan Xu^{*a}

^a College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China

^b Jiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 West Changjiang Road, Huai'an 223300, Jiangsu, People's Republic of China

(a)

(b)

Fig.S1 (a) The SEM of compound **1** or **2** (The shapes between compounds **1** and **2** are similar, so, we do not separate them when we do the SEM test); (b) The SEM of compound **3**.

Fig.S2 The hydrogen bonding interactions between structure directing agents and framework. Symmetry codes: (a) 0.5-y, -0.5+x, -0.25+z; (b) 1+y, x, -z; (c) 1.5-x, 0.5+y, -0.25-z; (d) 1-x, -y, -0.5+z; (e) 0.5+y, 0.5-x, -0.75+z; (g) 1-y, 1-x, -0.5-z.

Fig.S3 CD spectrum for the mixture of 1 and 2.

Fig.S4 (a) The hydrogen bonding interactions between en and $[3^8.10^6]$ cage; (b) The hydrogen

bonding interactions between $[Ni(en)_3]^{2+}$ and $[3^4.6.10^3]$ cage. Symmetry codes: (a) 1-y, 0.5+z, 0.5-x; (b) 0.5-z, 1-x, -0.5+y; (c) 0.5+z, 0.5-x, 1-y; (d) -0.5+y, 0.5-z, -x; (e) 0.5+x, 1.5-y, -z; (f) 0.5-x, 1-y, 0.5+z; (g) y, 0.5-z, 0.5+x; (h) 0.5-z, 0.5+x, y; (i) 1-y, 1-z, 1-x; (j) 1-x, 1-y, 1-z; (k) 1-z, 1-x, 1-y; (l) y, z, x; (m) z, x, y.

TG Analysis

Fig.S5 TGA curve of mixed L- and $D-[C_2NH_8][AlGe_3O_8]$ (1 and 2).

Fig.S6 TGA curve of spectra of compound 3.

IR Spectra

Fig.S7 The IR spectra of mixed L- and $D-[C_2NH_8][AlGe_3O_8]$ (1 and 2).

2Theta/^oCu-Ka)

Fig.S9 Powder XRD patterns of compound **3** heated under 400 °C for about 5 hours, which shows the diffraction peaks could not match with the simulated, indicates that the skeleton of compound **3** has been broken.

ç

Table 1. Selected bond distances (A) and angles (⁵) in (1)				
Ge(1)–O(4)	1.727(9)	$O(1)^{\#1} - T(1) - O(3)$	105.8(4)	
Ge(1)–O(1)	1.738(9)	$O(1)-T(1)-O(1)^{\#1}$	107.2(5)	
$Ge(1) - O(1)^{\#1}$	1.760(9)	$O(4)-T(1)-O(1)^{\#1}$	111.8(5)	
Ge(1)–O(3)	1.782(9)	O(4)–T(1)–O(3)	110.5(5)	
Ge(2)–O(2)	1.707(10)	O(2)-T(3)-O(2) ^{#5}	110.6(6)	
$Ge(2) - O(2)^{#2}$	1.707(10)	O(2)–T(2)–O(3) ^{#3}	107.1(4)	
Ge(2)–O(3) ^{#3}	1.728(10)	O(2)-T(2)-O(3) ^{#4}	111.9(5)	
$Ge(2) - O(3)^{#4}$	1.728(10)	$O(2)-T(2)-O(2)^{#2}$	101.5(7)	
Ge(3)–O(4)	1.755(10)	$O(3)^{#3} - T(2) - O(3)^{#4}$	116.4(6)	
Ge(3)–O(4) ^{#5}	1.755(10)	O(4)-T(3)-O(4) ^{#5}	117.1(6)	
Ge(3)–O(2)	1.758(9)	O(4)-T(3)-O(2)	103.1(5)	
Ge(3)–O(2) ^{#5}	1.758(9)	$O(4)^{\#5}-T(3)-O(2)$	111.5(5)	
O(1)–T(1)–O(3)	111.4(4)	O(4)-T(3)-O(2) ^{#5}	111.5(5)	
O(1)–T(1)–O(4)	110.1(4)	$O(4)^{\#5} - T(3) - O(2)^{\#5}$	103.1(5)	

Symmetry transformations used to generate equivalent atoms: #1 y+1/2, -x+1/2, z+1/4 #2 -y+1, -x+1, -z-1/2 #3 -y+1/2, x+1/2, z-1/4 #4 -x+1/2, y+1/2, -z-1/4 #5 y, x, -z.

			(-)
T(1)–O(3)	1.739(3)	T(2)–O(4) ^{#2}	1.743(3)
$T(1)-O(3)^{\#1}$	1.745(3)	T(2)–O(1)	1.746(3)
T(1)–O(1)	1.750(3)	T(2)–O(4)	1.752(3)
T(1)–O(2)	1.755(3)	$T(2)-O(2)^{\#1}$	1.757(3)
Ni(1)–N(1)	2.100(4)	Ni(1)–N(2)	2.148(5)
Ni(1)–N(1) ^{#3}	2.100(4)	Ni(1)–N(2) ^{#4}	2.148(5)
Ni(1)-N(1) ^{#4}	2.100(4)	Ni(1)–N(2) ^{#3}	2.148(5)
$O(3) - T(1) - O(3)^{\#1}$	110.6(2)	N(1)#4-Ni(1)-N(2)#4	80.84(18)
O(3)–T(1)–O(1)	110.03(15)	N(2)-Ni(1)-N(2)#4	93.8(2)
$O(3)^{\#1} - T(1) - O(1)$	108.56(14)	N(1)-Ni(1)-N(2) ^{#3}	170.37(19)
O(3)–T1)–O(2)	107.61(14)	$N(1)^{#3}$ -Ni(1)-N(2) ^{#3}	80.84(18)
$O(3)^{\#1}-T(1)-O(2)$	108.96(16)	$N(1)^{#4}-Ni(1)-N(2)^{#3}$	94.5(2)
O(1)–T(1)–O(2)	111.09(15)	N(2)-Ni(1)-N(2) ^{#3}	93.8(2)
$O(4)^{#2} - T(2) - O(1)$	112.01(15)	$N(2)^{#4}-Ni(1)-N(2)^{#3}$	93.8(2)
$O(4)^{#2} - T(2) - O(4)$	107.62(19)	Ge(2)–O(1)–Ge(1)	131.24(18)
O(1)–T(2)–O(4)	108.89(15)	Ge(1)-O(2)-Al(2) ^{#5}	128.19(18)
$O(1)-T(2)-O(2)^{\#1}$	108.02(14)	$Ge(1)-O(2)-Ge(2)^{\#5}$	128.19(18)
$O(4)-T(2)-O(2)^{\#1}$	112.77(16)	$Ge(1)-O(3)-Al(1)^{\#5}$	127.05(18)
N(1)-Ni(1)-N(1) ^{#3}	91.59(17)	$Ge(1)-O(3)-Ge(1)^{\#5}$	127.05(18)
N(1)-Ni(1)-N(1) ^{#4}	91.59(17)	Al(2) ^{#6} –O(4)–Ge(2)	130.80(19)
$N(1)^{#3}$ -Ni(1)-N(1) ^{#4}	91.59(17)	$\text{Ge}(2)^{\#6}$ -O(4)-Ge(2)	130.80(19)
N(1)-Ni(1)-N(2)	80.84(18)	C(2A)-N(2)-C(2)	32.7(10)
N(1) ^{#3} -Ni(1)-N(2)	94.5(2)	C(2A)–N(2)–Ni(1)	111.4(7)
N(1)#4-Ni(1)-N(2)	170.37(19)	C(2)–N(2)–Ni(1)	104.2(6)
N(1)-Ni(1)-N(2) ^{#4}	94.5(2)	C(1)–N(1)–Ni(1)	111.2(3)
$N(1)^{#3}$ -Ni(1)-N(2) ^{#4}	170.37(19)	$O(4)^{#2}$ -Ge(2)-O(2) ^{#1}	107.59(16)

 Table 2.
 Selected bond distances (Å) and angles (°) in (3)

Symmetry transformations used to generate equivalent atoms: #1 -y+1, -z+1, -x; #2 -z, x+1/2, -y+1/2; #3 -z+1/2, -x+1, y-1/2; #4 -y+1, z+1/2, -x+1/2; #5 -z, -x+1, -y+1; #6 y-1/2, -z+1/2, -x.