Electronic supplementary information

A series of metal-organic frameworks based on a semi-rigid

bifunctional ligand 5-((1H-1,2,4-triazol-1-yl)methoxy) isophthalic

acid and flexible N-donor bridging ligands

Yan Yang, Jin Yang, Peng Du, Ying-Ying Liu* and Jian-Fang Ma*

Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Table S1. Selected bond distances (A) and angles () for 1.				
Co(1)-O(1W)	2.0673(15)	Co(1)-N(4)	2.0949(17)	
Co(1)-O(3) ^{#1}	2.1308(13)	Co(1)-O(4) ^{#2}	2.1523(14)	
$Co(1)-N(3)^{\#3}$	2.1602(17)	Co(1)-O(1)	2.1791(13)	
O(1W)-Co(1)-N(4)	91.01(7)	O(1W)-Co(1)-O(3) ^{#1}	86.92(6)	
N(4)-Co(1)-O(3) ^{#1}	88.26(6)	O(1W)-Co(1)-O(4) ^{#2}	165.53(6)	
N(4)-Co(1)-O(4) ^{#2}	87.82(6)	$O(3)^{\#1}-Co(1)-O(4)^{\#2}$	107.46(5)	
O(1W)-Co(1)-N(3) ^{#3}	100.92(7)	N(4)-Co(1)-N(3) ^{#3}	167.04(7)	
O(3) ^{#1} -Co(1)-N(3) ^{#3}	87.37(6)	O(4) ^{#2} -Co(1)-N(3) ^{#3}	81.87(6)	
O(1W)-Co(1)-O(1)	85.36(6)	N(4)-Co(1)-O(1)	100.40(6)	
O(3) ^{#1} -Co(1)-O(1)	168.48(5)	O(4) ^{#2} -Co(1)-O(1)	80.67(5)	
N(3) ^{#3} -Co(1)-O(1)	85.71(6)			

 Table S1. Selected bond distances (Å) and angles (°) for 1.

Symmetry transformations used to generate equivalent atoms: $^{\#1}$ x, -y+2, z-1/2; $^{\#2}$ x, -y+1, z-1/2; $^{\#3}$ -x+2, -y+1, -z+2.

Tuble SE. Selected John distances (T) and disples () for E.				
Mn(1)-O(1W)	2.1693(16)	Mn(1)-O(2)	2.1783(14)	
Mn(1)-O(1) ^{#1}	2.2041(15)	Mn(1)-N(4)	2.2119(19)	
Mn(1)-O(4) ^{#2}	2.2357(14)	Mn(1)-N(3) ^{#3}	2.2902(18)	
O(1W)-Mn(1)-O(2)	87.17(6)	$O(1W)-Mn(1)-O(1)^{\#1}$	165.50(6)	
O(2)-Mn(1)-O(1) ^{#1}	107.31(5)	O(1W)-Mn(1)-N(4)	92.34(7)	
O(2)-Mn(1)-N(4)	87.46(7)	$O(1)^{\#1}-Mn(1)-N(4)$	87.62(7)	
O(1W)-Mn(1)-O(4) ^{#2}	83.96(6)	$O(2)-Mn(1)-O(4)^{\#2}$	167.24(6)	
$O(1)^{\#1}-Mn(1)-O(4)^{\#2}$	81.87(5)	$N(4)-Mn(1)-O(4)^{#2}$	102.02(7)	
$O(1W)-Mn(1)-N(3)^{\#3}$	100.86(7)	$O(2)-Mn(1)-N(3)^{\#3}$	87.44(6)	
$O(1)^{\#1}-Mn(1)-N(3)^{\#3}$	81.05(6)	$N(4)-Mn(1)-N(3)^{\#3}$	165.59(7)	
$O(4)^{#2}-Mn(1)-N(3)^{#3}$	85.25(6)			

Table S2. Selected bond distances (Å) and angles (°) for 2.

Symmetry transformations used to generate equivalent atoms: #1 x, y+1, z; #2 x, -y+2,

z-1/2; #3 -x, y+1, -z+3/2.

Table 55. Selected bolid distances (T) and digles () for 5.				
$Mn(1)-O(4)^{\#1}$	2.1131(13)	$Mn(1)-O(3)^{#2}$	2.1308(14)	
Mn(1)-N(4)	2.2271(17)	Mn(1)-O(2)	2.2533(13)	
$Mn(1)-N(3)^{\#3}$	2.2727(17)	Mn(1)-O(1)	2.2775(14)	
$O(4)^{\#1}$ -Mn(1)-O(3) ^{#2}	107.70(5)	$O(4)^{\#1}$ -Mn(1)-N(4)	89.08(6)	
$O(3)^{#2}-Mn(1)-N(4)$	84.34(6)	$O(4)^{\#1}-Mn(1)-O(2)$	151.14(5)	
$O(3)^{#2}-Mn(1)-O(2)$	100.95(5)	N(4)-Mn(1)-O(2)	90.42(6)	
$O(4)^{\#1}-Mn(1)-N(3)^{\#3}$	101.13(6)	$O(3)^{#2}-Mn(1)-N(3)^{#3}$	86.50(6)	
$N(4)-Mn(1)-N(3)^{\#3}$	167.99(6)	O(2)-Mn(1)-N(3) ^{#3}	83.70(6)	
$O(4)^{\#1}$ -Mn(1)-O(1)	93.33(5)	$O(3)^{#2}-Mn(1)-O(1)$	158.92(5)	
N(4)-Mn(1)-O(1)	94.99(6)	O(2)-Mn(1)-O(1)	57.97(5)	
$N(3)^{\#3}-Mn(1)-O(1)$	90.77(6)			
O(4) ^{#1} -Mn(1)-O(1) N(4)-Mn(1)-O(1) N(3) ^{#3} -Mn(1)-O(1)	93.33(5) 94.99(6) 90.77(6)	O(3) ^{#2} -Mn(1)-O(1) O(2)-Mn(1)-O(1)	158.92(5) 57.97(5)	

Table S3. Selected bond distances (Å) and angles (°) for 3.

Symmetry transformations used to generate equivalent atoms: ^{#1} x, y+1, z; ^{#2} -x, -y, -z; ^{#3} x-1, y, z.

Table S4a. Selected bond distances (Å) and angles (°) for 4.

Ni(1)-N(7)	2.012(4)	Ni(1)-N(10) ^{#1}	2.015(4)
Ni(1)-O(1)	2.091(3)	Ni(1)-O(6)	2.125(3)
Ni(1)-O(7)	2.140(3)	Ni(1)-O(2)	2.153(3)
Ni(2)-N(3)#1	2.070(3)	Ni(2)-O(4)	2.075(3)
Ni(2)-O(1W)	2.091(3)	Ni(3)-O(9)	2.046(3)
Ni(3)-N(6)#5	2.085(3)	Ni(3)-O(2W)	2.090(3)
N(7)-Ni(1)-N(10) ^{#1}	95.61(17)	N(7)-Ni(1)-O(1)	103.04(15)
N(10) ^{#1} -Ni(1)-O(1)	98.61(15)	N(7)-Ni(1)-O(6)	99.71(15)
N(10) ^{#1} -Ni(1)-O(6)	103.84(14)	O(1)-Ni(1)-O(6)	146.10(11)
N(7)-Ni(1)-O(7)	93.05(15)	N(10) ^{#1} -Ni(1)-O(7)	164.09(15)
O(1)-Ni(1)-O(7)	92.39(12)	O(6)-Ni(1)-O(7)	61.43(11)
N(7)-Ni(1)-O(2)	164.64(15)	N(10) ^{#1} -Ni(1)-O(2)	90.27(15)
O(1)-Ni(1)-O(2)	61.96(11)	O(6)-Ni(1)-O(2)	92.61(12)
O(7)-Ni(1)-O(2)	84.77(13)	N(3) ^{#2} -Ni(2)-O(4)	88.10(12)
N(3) ^{#1} -Ni(2)-O(4)	91.90(12)	O(4)-Ni(2)-O(1W) ^{#3}	88.30(12)
N(3) ^{#2} -Ni(2)-O(1W)	92.85(13)	N(3) ^{#1} -Ni(2)-O(1W)	87.15(13)
O(4)-Ni(2)-O(1W)	91.70(12)	O(9)-Ni(3)-N(6) ^{#5}	89.53(12)
O(9)-Ni(3)-N(6) ^{#6}	90.47(12)	O(9)-Ni(3)-O(2W) ^{#4}	89.90(13)
O(9)-Ni(3)-O(2W)	90.10(13)	N(6) ^{#5} -Ni(3)-O(2W)	91.35(15)
N(6)#6-Ni(3)-O(2W)	88.65(15)		

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x-1, y, z; $^{#2}$ -x+1, -y, -z+1; $^{#3}$ -x, -y, -z+1; $^{#4}$ -x+1, -y, -z+2; $^{#5}$ -x, -y, -z+2; $^{#6}$ x+1, y, z.

Table S4b . Hydrogen bonds for 4 (Å and °).

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
O(1W)-H(1B)O(3)	0.848(10)	1.91(3)	2.676(4)	149(5)
O(3W)-H(3A)O(1)	0.853(10)	1.96(3)	2.770(5)	157(8)
O(1W)-H(1A)O(3W)#7	0.848(10)	1.98(2)	2.797(6)	160(5)

O(2W)-H(2A)O(6)#8	0.851(10)	2.08(4)	2.835(4)	147(6)
O(2W)-H(2B)O(8)#4	0.847(10)	1.90(3)	2.660(4)	148(5)
O(3W)-H(3B)O(4W) ^{#6}	0.854(10)	2.07(6)	2.813(8)	146(10)

Symmetry transformations used to generate equivalent atoms: ^{#4} -x+1, -y, -z+2; ^{#6} x+1, y, z; ^{#7} x-1, y-1, z; ^{#8} -x+1, -y+1, -z+2.

 Table S5. Selected bond distances (Å) and angles (°) for 5.

Cu(1)-O(1)	1.956(3)	Cu(1)-N(7)	1.957(4)
Cu(1)-N(6)	1.976(4)	$Cu(1)-O(4)^{\#1}$	1.984(3)
Cu(2)-O(9)#2	1.954(3)	Cu(2)-O(6)	1.967(3)
Cu(2)-N(9)	1.989(4)	Cu(2)-N(3) ^{#2}	2.015(4)
Cu(2)-O(1W)	1.278(5)		
O(1)-Cu(1)-N(7)	90.14(14)	O(1)-Cu(1)-N(6)	86.76(14)
N(7)-Cu(1)-N(6)	171.62(15)	$O(1)-Cu(1)-O(4)^{\#1}$	175.83(12)
$N(7)-Cu(1)-O(4)^{\#1}$	91.56(14)	$N(6)-Cu(1)-O(4)^{\#1}$	92.06(14)
$O(9)^{#2}-Cu(2)-O(6)$	173.52(12)	$O(9)^{#2}-Cu(2)-N(9)$	93.32(14)
O(6)-Cu(2)-N(9)	90.26(14)	$O(9)^{\#2}-Cu(2)-N(3)^{\#2}$	87.15(13)
$O(6)-Cu(2)-N(3)^{\#2}$	88.15(14)	$N(9)-Cu(2)-N(3)^{\#2}$	166.99(15)
$O(9)^{#2}-Cu(2)-O(1W)$	92.51(11)	O(6)-Cu(2)-O(1W)	92.41(11)
N(9)-Cu(2)-O(1W)	97.08(16)	$N(3)^{#2}-Cu(2)-O(1W)$	95.89(15)

N(9)-Cu(2)-O(1W) 97.08(16) N(3)²²-Cu(2)-O(1W) 95.89(15) Symmetry transformations used to generate equivalent atoms: ^{#1} -x+1, y+1/2, -z+3/2; ^{#2} -x, y+1/2, -z+1/2.

Table S6. Selected bond distances (Å) and angles (°) for 6.

$Cu(1)-O(3)^{\#1}$	1.964(2)	Cu(1)-N(4)	1.984(3)
Cu(1)-O(1)	2.001(2)	$Cu(1)-N(3)^{\#2}$	2.012(3)
$O(3)^{\#1}-Cu(1)-N(4)$	89.22(12)	$O(3)^{\#1}$ -Cu(1)-O(1)	176.60(10)
N(4)-Cu(1)-O(1)	88.25(12)	$O(3)^{\#1}-Cu(1)-N(3)^{\#2}$	88.30(11)
N(4)-Cu(1)-N(3) ^{#2}	173.98(12)	O(1)-Cu(1)-N(3) ^{#2}	93.99(11)

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x, -y+3/2, z+1/2; $^{#2}$ -x, -y+1, -z+1.

Table S7. Selected bond distances (Å) and angles (°) for 7.

	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Zn(1)-O(1)	1.960(2)	Zn(1)-O(4) ^{#1}	1.969(2)
Zn(1)-N(4)	1.990(3)	Zn(1)-N(3) ^{#2}	2.019(3)
O(1)-Zn(1)-O(4) ^{#1}	107.63(9)	O(1)-Zn(1)-N(4)	115.33(12)
$O(4)^{\#1}$ -Zn(1)-N(4)	108.47(11)	O(1)-Zn(1)-N(3) ^{#2}	105.52(12)
$O(4)^{\#1}$ -Zn(1)-N(3) ^{#2}	106.98(12)	N(4)-Zn(1)-N(3) ^{#2}	112.52(13)

Symmetry transformations used to generate equivalent atoms: ^{#1} x, y-1, z; ^{#2} x, y-1, z-1.

	()	0 ()	
Zn(1)-O(1)	1.977(2)	$Zn(1)-O(4)^{\#1}$	1.992(2)
Zn(1)-N(4)	1.994(3)	Zn(1)-N(3) ^{#2}	2.020(3)
O(1)-Zn(1)-O(4) ^{#1}	99.08(10)	O(1)-Zn(1)-N(4)	110.18(12)
$O(4)^{\#1}$ -Zn(1)-N(4)	112.67(11)	O(1)-Zn(1)-N(3) ^{#2}	110.49(11)
$O(4)^{\#1}$ -Zn(1)-N(3) ^{#2}	107.52(12)	N(4)-Zn(1)-N(3) ^{#2}	115.64(12)

 Table S8. Selected bond distances (Å) and angles (°) for 8.

Symmetry transformations used to generate equivalent atoms: ^{#1} x+1/2, -y+1/2, z+1/2; ^{#2} x+1/2, y-1/2, z.

Scheme S1. Coordination modes of L ligands in compounds 1–8.

Fig. S1 Crystal structure of $[Mn_2(L)_2(biim-4)(H_2O)_2]$ (2): (a) Coordination environment surrounding Mn1 ion. Symmetry codes: ^{#1} x, y+1, z; ^{#2} x, -y, z-1/2; ^{#3} -x, y+1, -z+3/2; ^{#4} -x+1/2, -y+1/2, -z+2.

Fig. S2 View of the 3D supramolecular architecture connected by intermolecular hydrogen bonding interactions in **4**.

Fig. S3 Simulated (red) and experimental (blue) PXRD patterns of 1-8.

Fig. S4 TGA curves of compounds 1–8.