Electronic Supplementary Information (ESI) :

Self-Assembly of single-crystalline α -Fe₂O₃ nanoplates to columnar superstructures: controllable synthesis, growth mechanism, and properties

Jian Sun,^a Kong-Lin Wu,^a Xiang-Zi Li,^b Chao Dong,^a Xian-Wen Wei,^{*a} Xian-Wen

Wang,^a Bei Zhang,^a Zai-Xian Zhang,^a and Jia-Rui Huang^a

^a College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, P. R. China.

^b Department of Chemistry, Wannan Medical College, Wuhu 241000, P. R. China.

*Corresponding author:

Fax: +86-553-3869303; Tel: +86-553-3869301;

E-mail: xwwei@mail.ahnu.edu.cn (X.-W. Wei).

Sample		Reaction		Sizes		
number	$C(\mathrm{Fe}^{3+})$	time	Morphology	diameter	thickness	length
α-Fe ₂ O ₃ -1	0.01 M	30 h	column-like (Fig. 3a)	~120 nm	~20 nm	~220 nm
α-Fe ₂ O ₃ -2	0.02 M	30 h	column-like (Fig. 2a)	~380 nm	~40 nm	$\sim 2 \ \mu m$
α-Fe ₂ O ₃ -3	0.03 M	30 h	column-like (Fig. 3b)	~750 nm	~80 nm	$\sim 2.2 \ \mu m$
α-Fe ₂ O ₃ -4	0.02 M	5 h	plates (Fig. S6b)	~240 nm	~30 nm	-
α-Fe ₂ O ₃ -5	0.04 M	30 h	plates (Fig. 3c)	~1.5 µm	~240 nm	-
α-Fe ₂ O ₃ -6	0.1 M	30 h	plates (Fig. 3d)	~2.5 µm	~500 nm	-

Table S1. The α -Fe₂O₃ crystals obtained by a hydrothermal route in the presence of glycerin (1 mL) at 140 °C with different concentration of Fe³⁺ and reaction time.

		Additives		Reaction	Yeilds		
Sample number	C _{Fe3+}	polyols	Surfactant	conditions	(wt %)	Morphology	
α-Fe ₂ O ₃ -7	0.02 M	1 mL EG ^[a]	absence	140 °C for 30 h	~80	sphere (Fig. S5a)	
α-Fe ₂ O ₃ -8	0.02 M	1 mL DPE ^[a]	absence	140 °C for 30 h	~85	sphere (Fig. S5b)	
α-Fe ₂ O ₃ -9	0.02 M	1 mL NPA ^[a]	absence	140 °C for 30 h	~85	aggregated sphere (Fig. S5c)	
α-Fe ₂ O ₃ -10	0.02 M	1 mL PEG-200 ^[a]	absence	140 °C for 30 h	~80	aggregated sphere (Fig. S5d)	
α-Fe ₂ O ₃ -11	0.02 M	without polyols	absence	140 °C for 30 h	~60	polyhedron (Fig. S5e)	
α-Fe ₂ O ₃ -12	0.02 M	2 mL glycerin	absence	140 °C for 30 h	~90	plates (Fig. S5f)	
α-Fe ₂ O ₃ -13	0.02 M	5 mL glycerin	absence	140 °C for 30 h	~50	plates (Fig. S5g)	
α-Fe ₂ O ₃ -14	0.02 M	1 mL glycerin	absence	120 °C for 30 h	~45	plates (Fig. S4a)	
α-Fe ₂ O ₃ -15	0.02 M	1 mL glycerin	absence	130 °C for 30 h	~75	column-like (Fig. S4b)	
α-Fe ₂ O ₃ -16	0.02 M	1 mL glycerin	absence	150 °C for 30 h	~98	column-like (Fig. S4c)	
α-Fe ₂ O ₃ -17	0.02 M	1 mL glycerin	absence	160 °C for 30 h	~98	column-like (Fig. S4d)	
α-Fe ₂ O ₃ -18	0.02 M	1 mL glycerin	CTAB ^[a]	140 °C for 30 h	~80	column-like (Fig. 4a)	
α-Fe ₂ O ₃ -19	0.02 M	1 mL glycerin	CTAC ^[a]	140 °C for 30 h	~85	column-like (Fig. 4b)	
α-Fe ₂ O ₃ -20	0.02 M	1 mL glycerin	PVP ^[a]	140 °C for 30 h	~60	platelet (Fig. 4c)	
α-Fe ₂ O ₃ -21	0.02 M	1 mL glycerin	PVA ^[a]	140 °C for 30 h	~60	plates (Fig. 4d)	
α-Fe ₂ O ₃ -22	0.02 M	1 mL glycerin	SDS ^[a]	140 °C for 30 h	~55	particle (Fig. 4e)	
α-Fe ₂ O ₃ -23	0.02 M	1 mL glycerin	SDBS ^[a]	140 °C for 30 h	~50	particle (Fig. 4f)	
α-Fe ₂ O ₃ -24	0.02 M	1 mL glycerin	absence	140 °C for 2 h	~35	particle (Fig. S6a)	
α-Fe ₂ O ₃ -25	0.02 M	1 mL glycerin	absence	140 °C for 10 h	~80	platelet (few) and column-	
2 9						like (Fig. S6c)	
α-Fe ₂ O ₃ -26	0.02 M	1 mL glycerin	absence	140 °C for 20 h	~ 90	plates (very few) and	
a 10203 20		0.9				column-like (Fig. S6d)	

Table S2. The yields and morphologies of products obtained with different experimental parameters such as temperature, types of polyol and surfactant, and reaction time.

[a] EG = ethylene glycol, DPE = diethylene glycol, NPA = n-propyl alcohol, PEG-200= poly(ethylene glycol 200), CTAB=cetyltrimethylammonium chloride bromide, CTAC=cetyltrimethylammonium chloride, PVP= polyvinylpyrrolidone, PVA=poly(vinyl alcohol), SDS= sodium dodecyl sulfonate, SDBS=sodium dodecyl benzene sulfonate.

Fig. S1 (a) Photograph of the gas sensor, and (b) working principle of the gas sensing measurement system (V_h : heating voltage; V_{out} : signal voltage and R_L : load resistor).

Fig. S2 High resolution SEM images of α -Fe₂O₃ crystals: (a) α -Fe₂O₃-2, (b) α -Fe₂O₃-3, (c) α -Fe₂O₃-5, and (d) α -Fe₂O₃-6.

Fig. S3 XRD patterns of the obtained α -Fe₂O₃ crystals with different sizes: (a) α -Fe₂O₃-5, (b) α -Fe₂O₃-6, and (c) α -Fe₂O₃-1, respectively.

Fig. S4 SEM images of α -Fe₂O₃ crystals formed at different temperatures of (a) 120 °C, (b) 130 °C, (c) 150 °C, and (d) 160 °C with the same reaction time of 30 h.

Fig. S5 SEM images of the samples obtained at different polyols of (a) EG, (b) DPE, (c) NPA, (d) PEG-200, (e) without polyol, (f) with glycerin/H₂O=2:38 (v/v), and (g) with glycerin/H₂O=5:35 (v/v), respectively, when keeping other conditions constant.

Fig. S6 SEM images of the α -Fe₂O₃ crystals obtained at 140 °C with different reaction times of (a) 2, (b) 5, (c) 10, and (d) 20 h, respectively.

Fig. S7 FT-IR spectra of α -Fe₂O₃ crystals: (a) α -Fe₂O₃-5, (b) α -Fe₂O₃-6, (c) α -Fe₂O₃-1, (d) α -Fe₂O₃-3, (e) α -Fe₂O₃-4, and (f) α -Fe₂O₃-2.

Fig. S8 Responses of the (a) plate-like α -Fe₂O₃ (α -Fe₂O₃-4) and (b) CODS α -Fe₂O₃ (α -Fe₂O₃-2) sensors upon exposure to nine kinds of organic vapors (100 ppm) at a working temperature of 280 °C, respectively.