Support Information

Metal Ion-Mediated Synthesis and Shape-dependent Magnetic Properties of Single-Crystalline α-Fe₂O₃ Nanoparticles

Wei Wu¹,^{2, 4}*, Shuanglei Yang^{3, 4}, Jun Pan³, Lingling Sun², Juan Zhou², Zhigao Dai,² Xiangheng Xiao², Hongbo Zhang³, Changzhong Jiang²*

¹ Laboratory of Functional Materials and Printing Electronics, School of Printing and Packaging,

Wuhan University, Wuhan 430072, P. R. China

² Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics

and Technology, Wuhan University, Wuhan 430072, P. R. China

³ State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, P. R.

China

⁴ the authors contributed equally to this work.

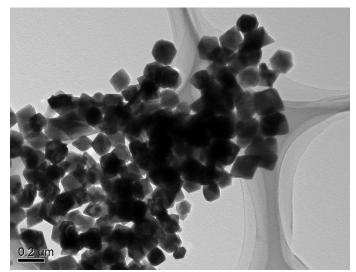
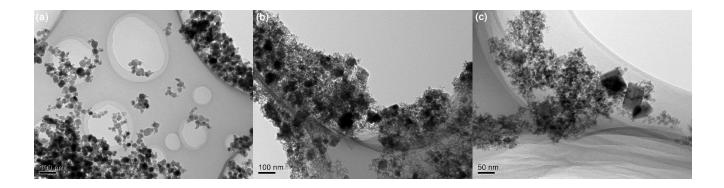
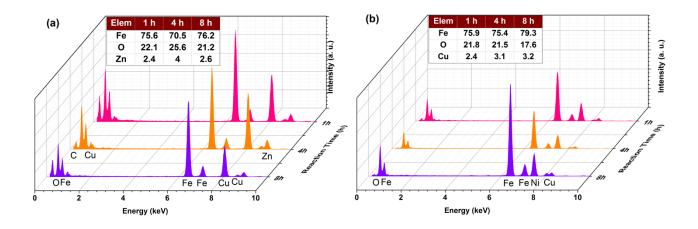
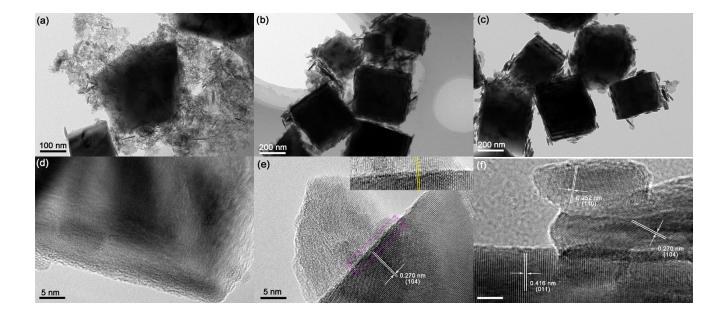




Figure S1 TEM image of the samples when the absence of ions additive.


^{*}To whom correspondence should be addressed. Tel: +86-27-68778529. Fax: +86-27-68778433. E-mail: weiwu@whu.edu.cn (W. Wu) and czjiang@whu.edu.cn (C. Jiang).

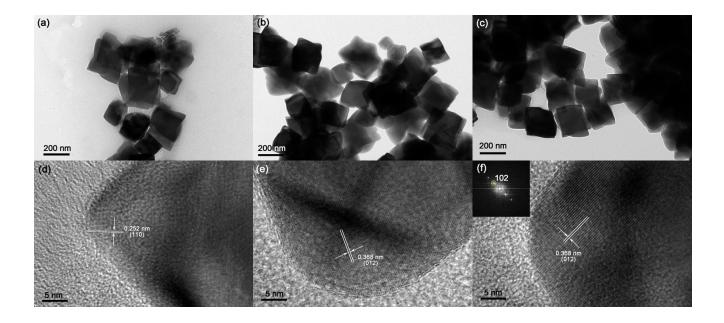

Figure S2 TEM images of the samples when the absence of the other metal ions: Ni ions (a), Mn ions (b), and Co ions (c).

Figure S3 The EDX spectra of cubic α -Fe₂O₃ particles (a, C and Cu elements comes from the carbon films coated copper grid) and thorhombic α -Fe₂O₃ particles (b, the Ni element comes from the nickel grid) with different reaction times.

Figure S4 TEM and HRTEM images of morphology evolution of the cubic α -Fe₂O₃ particles with different reaction time: (a, c) 1 h, (b, d) 4 h, and (d, f) 8 h, the scale bar is 5 nm.

Figure S5 TEM and HRTEM images of morphology evolution of the thorhombic α -Fe₂O₃ particles with different reaction time: (a, c) 1 h, (b, d) 4 h, and (d, f) 8 h.