Electronic Supplementary Information

Hirshfeld surface analysis of crystal packing in aza-aromatic picrate salts

Eric J. Chan,^{a,#} Simon Grabowsky,^{a,*} Jack M. Harrowfield,^{a,‡} Ming Wen Shi,^a Brian W.

Skelton,^{a,†} Alexandre N. Sobolev^a and Allan H. White^a

^a School of Chemistry and Biochemistry, M310, The University of Western Australia, Crawley, WA 6009, Australia;

* e-mail: simon.grabowsky@uwa.edu.au, Tel.: +61 (0)8 6488 3515, Fax: +61 (0)8 6488 1005

[#] Current address: Bristol-Myers Squibb R & D, 1 Squibb Drive, New Brunswick, NJ08903, USA

[‡] Current address: Institut de Science et d'Ingenierie Supramoleculaires, Université Louis Pasteur, 8 allée Gaspard Mongé, 67083 Strasbourg, France

[†] Current address: Centre for Microscopy, Characterisation and Analysis, M310, The University of Western Australia, Crawley, WA 6009, Australia

Contents

(a) Tables		Page
Table S1	Saturated base non-hydrogen geometries	S 3
Table S2	Pyridine ring non-hydrogen geometries	S 4
Table S3	Phenanthroline non-hydrogen geometries ((phenH)(pic) and (dmpH)(pic))	S5
Table S4	(a) Comparative geometries of quinoline-derived arrays	S 6
	(b) Chelated oxinate ligand geometries	S 8
Table S5	Non-hydrogen atom picrate anion geometries	S 9
Table S6	Interspecies approaches (Å) in the compounds of Table 1	S12
Table S7	Analysis of contact types in the picrate compounds of Table 1	S67

(b) Figures

Figure S1	Unit cell projections for the compounds of Table 1	S69
Figure S2	Aromatic overlap projections for the compounds of Table 1	S95
Figure S3	Hirshfeld surface projections for the anionic and cationic components of	
	the compounds of Table 1	S102

 Table S1 Saturated base non-hydrogen geometries

Compound	(pipH)(pic))•pip	(pipH)(pic) ²¹	2[(morH)([pic)]·H ₂ O	(morH)(pic) ^{22a}		
Entity	pipH	pip	pipH	morH 1	morH 2	morH 1	morH 2	
Distances (Å)								
$N-C(\alpha)$	1.472(2)	1.486(2)	1.494(3)	1.493(2)	1.497(2)	1.496(2)	1.497(2)	
	1.475(2)	1.483(2)	1.488(3)	1.491(2)	1.490(2)	1.491(2)	1.491(2)	
$C(\alpha)$ - $C(\beta)$	1.517(2)	1.513(2)	1.502(3)	1.516(2)	1.504(3)	1.513(2)	1.511(2)	
	1.517(2)	1.515(2)	1.499(3)	1.516(2)	1.513(2)	1.515(2)	1.513(2)	
$C(\beta)-C(\gamma)/O$	1.523(2)	1.524(2)	1.513(3)	1.423(2)	1.430(2)	1.434(2)	1.438(2)	
	1.525(2)	1.524(2)	1.513(3)	1.423(2)	1.409(2)	1.436(2)	1.433(2)	
Angles (deg.)								
$C(\alpha)$ -N- $C(\alpha)$	111.67(9)	112.82(9)	112.51(2)	111.00(12)	110.10(13)	110.29(10)	110.35(10)	
$N-C(\alpha)-C(\beta)$	112.70(10)	111.75(9)	110.7(2)	108.51(12)	109.93(14)	108.48(11)	108.76(11)	
	113.15(10)	111.14(10)	110.0(2)	108.17(12)	109.04(14)	108.92(10)	109.01(10)	
$C(\alpha)$ - $C(\beta)$ - $C(\gamma)/O$	110.87(10)	111.28(10)	112.2(2)	111.39(12)	111.27(17)	110.48(11)	110.24(11)	
- () - (-) - (-) -	110.11(11)	111.02(10)	110.9(2)	111.46(12)	112.09(14)	110.50(11)	110.54(10)	
$C(\beta)$ - $C(\gamma)$ /O- $C(\beta)$	110.75(10)	110.51(10)	109.8(2)	110.90(11)	109.00(12)	110.98(10)	111.02(10)	
Torsion angles (deg.)								
$C(\alpha)$ -N- $C(\alpha)$ - $C(\beta)$	54.26(13)	-54.78(13)	-54.9(2)	56.3(2)	-54.0(2)	57.62(14)	-57.23(14)	
	-55.00(13)	55.50(12)	57.4(2)	-56.6(2)	53.6(2)	-57.29(14)	56.75(17)	
N-C(α)-C(β)-C(γ)/O	-54.32(14)	53.89(13)	53.5(3)	-57.3(2)	57.9(2)	-58.84(14)	58.66(14)	
V	55.13(14)	-55.58(14)	-58.3(2)	58.0(2)	-58.8(2)	57.97(14)	-57.89(14)	
$C(\alpha)-C(\beta)-C\gamma)/O-C(\beta)$	54.22(14)	-54.29(15)	-54.7(2)	59.9(2)	-61.4(2)	60.91(14)	-61.09(14)	
	-54.27(14)	55.19(15)	56.9(2)	-60.4(2)	62.1(2)	-60.32(14)	60.61(14)	

Atoms are denoted α , β , γ with respect to the nitrogen atom.

Base (ring)	2mp (1,2)	bpy (1,2)	dpa (1,2) [*]	tpy (1,2,3)	py ^{**}
Distances (Å)					
N(1)-C(2)	1.346(3), 1.353(3)	1.357(3), 1.353(3)	1.353(2), 1.335(2)	1.3470(12), 1.3439(12), 1.3559(11)	1.3400
N(1)-C(6)	1.352(3), 1.343(3)	1.351(3), 1.344(3)	1.370(2), 1.348(2)	1.3407(13), 1.3477(11), 1.3428(12)	1.3384
C(2)-C(3)	1.387(3), 1.388(3)	1.394(3), 1.397(3)	1.405(2), 1.401(2)	1.3971(13), 1.4011(12), 1.3897(15)	1.3824
C(6)-C(5)	1.364(4), 1.376(3)	1.382(4), 1.400(4)	1.366(2), 1.377(3)	1.3894(15), 1.3956(12), 1.3785(16)	1.3822
C(3)-C(4)	1.379(4), 1.381(4)	1.401(4), 1.396(4)	1.372(2), 1.379(2)	1.3902(16), 1.3860(16), 1.3879(13)	1.3908
C(4)-C(5)	1.392(4), 1.384(4)	1.394(4), 1.385(4)	1.403(2), 1.393(3)	1.3847(14), 1.3925(14), 1.3899(13)	1.3915
C(2)-C(2')/N(O)	1.491(4), 1.489(4)	1.492(3), -	1.357(2), 1.393(2)	1.4896(15), - , 1.4796(12)	_
Angles (degrees)					
C(2)-N(1)-C(6)	123.2(2), 123.4(2)	123.6(2), 117.3(2)	122.19(12), 117.64(13)	117.42(9), 118.00(8), 123.90(8)	122.58
N(1)-C(2)-C(3)	117.8(2), 117.4(2)	118.4(2), 123.6(2)	118.86(12), 123.46(14)	122.93(9), 121.98(9), 118.20(8)	120.00
N(1)-C(6)-C(5)	120.1(2), 120.2(2)	119.5(2), 123.1(2)	120.48(13), 123.19(16)	123.72(10), 123.84(8), 119.31(8)	119.85
C(2)-C(3)-C(4)	120.3(2), 120.4(2)	119.2(2), 117.8(2)	119.31(13), 117.53(15)	118.23(9), 119.18(9), 119.00(8)	118.78
C(6)-C(5)-C(4)	118.7(2), 118.4(3)	118.8(2), 118.6(3)	118.69(14), 118.28(15)	118.13(9), 117.41(8), 118.70(9)	118.95
C(3)-C(4)-C(5)	119.9(2), 120.2(2)	120.4(2), 119.5(3)	120.47(14), 119.89(15)	119.49(9), 119.56(9), 120.85(8)	119.84
N(1)-C(2)-C(2')/N(O)	117.7(2), 117.4(2)	115.9(2), 114.0(2)	120.17(12), 117.84(12)	115.70(8), 117.23(8) [†] , 116.67(8)	-
C(3)-C(2)-C(2')/N(O)	124.5(2), 125.3(2)	125.7(2), 122.4(2)	120.97(12), 118.69(13)	121.34(8), 120.74(8) [†] , 125.10(8)	-

Table S2 Pyridine ring non-hydrogen geometries

Where protonation is unsymmetrical, values for the protonated ring are given first; where rings are linked, C(2) carries the linker. The common ad hoc numbering scheme employed in this Table is shown in the pictogram.

*The angle at the central nitrogen atom is 127.98(12)°. [†]C(3),N-C(6)-C(2') 114.59(7), 121.55(8)°; ring 3 is '*anti*'.

**Theoretical (for (pyH)(pic)) (see text).

Base (ring)	phen (1,2)	dmp (1,2)
Distances (Å)		
N(1)-C(2)	1.387(2), 1.384(2)	1.366(2), 1.353(2)
N(1)-C(6)	1.352(3), 1.348(3)	1.338(2), 1.325(2)
C(2)-C(3)	1.430(3), 1.439(3)	1.400(2), 1.409(2)
C(6)-C(5)	1.425(3), 1.435(3)	1.403(2), 1.408(3)
C(3)-C(4)	1.437(3), 1.442(3)	1.410(3), 1.406(3)
C(4)-C(5)	1.405(3), 1.392(3)	1.353(3), 1.362(3)
C(2)-C(2')	1.465(3), -	1.436(2), -
C(3)-C(3')	1.466(3), 1.472(3)	1.426(3), 1.422(3)
C(6)-C(61)		1.478(3), 1.499(3)
C(3')-C(3')	1.832(3), -	1.351(3), -
Angles (degrees)		
C(2)-N(1)-C(6)	122.95(17), 116.7(2)	123.41(15), 117.46(17)
N(1)-C(2)-C(3)	119.43(17), 124.6(2)	119.19(15), 124.15(16)
N(1)-C(6)-C(5)	120.05(19), 123.6(2)	118.13(17), 122.48(17)
C(2)-C(3)-C(4)	117.85(18), 116.1(2)	117.92(16), 116.59(16)
C(6)-C(5)-C(4)	119.1(2), 119.3(2)	120.83(17), 120.01(18)
C(3)-C(4)-C(5)	120.6(2), 119.6(2)	120.51(17), 119.29(18)
N(1)-C(2)-C(2')	118.92(17), 117.1(2)	119.83(15), 118.43(16)
C(3)-C(2)-C(2')	121.60(17), 118.3(2)	120.98(16), 117.39(15)
C(2)-C(3)-C(3')	118.37(18), 119.6(2)	119.32(16), 120.87(16)
C(4)-C(3)-C3')	123.78(19), 124.3(2)	122.75(16), 122.52(17)
C(3)-C(3')-C(3')	121.1(2), 121.0(2)	120.62(17), 120.81(18)
N(1)-C(6)-C(61)	-	119.37(17), 118.13(18)
C(5)-C(6)-C(61)	-	122.48(17), 119.37(17)

 Table S3 Phenanthroline non-hydrogen geometries ((phenH)(pic) and (dmpH)(pic))

Values for the protonated ring are given first; the common *ad-hoc* numbering scheme employed in this Table is as follows:

Base	quinH ^a	iqH ^b	2mqH ^c	ohqH ^d	ohq ^e	ox ^{- f}	0X ⁻	(chelated) ^g			
	-	-	-	-	-		Al	Fe	Со	$\mathbf{m1}^{\mathrm{h}}$	$m2^{h}$
Distances /Å											
X(1)-X(2)	1.312(3)	1.314(6)	1.325(4)	1.318(2)	1.3209(15)	1.313(4)	1.33 ₆	1.319	1.325	1.337(3)	1.306(8)
X(1)-C(9)	1.373(2)	1.412(6)	1.367(5)	1.361(2)	1.3648(14)	1.372(6)	1.35 ₈	1.363	1.369	1.337(3)	1.371(7)
C(2)-C(3)	1.387(3)	1.362(5)	1.387(4)	1.385(5)	1.4095(16)	1.392(3)	1.397	1.403	1.412	1.384(4)	1.410(9)
C(3)-C(4)	1.365(3)	1.343(6)	1.346(6)	1.356(3)	1.3702(16)	1.324(6)	1.361	1.349	1.366	1.369(4)	1.353(9)
C(4)-C(10)	1.406(3)	1.403(6)	1.407(5)	1.408(3)	1.4141(16)	1.402(5)	1.414	1.41 ₈	1.42_{0}	1.392(4)	1.401(9)
C(5)-C(6)	1.350(3)	1.368(6)	1.340(6)	1.354(3)	1.3684(16)	1.346(4)	1.367	1.359	1.377		1.356(9)
C(5)-C(10)	1.417(3)	1.419(6)	1.402(6)	1.406(3)	1.4179(14)	1.409(6)	1.42_{1}	1.405	1.416		1.425(8)
C(6)-C(7)	1.404(3)	1.407(6)	1.398(5)	1.402(3)	1.4105(16)	1.388(3)	1.40_{9}	1.40_{8}	1.41 ₁		1.407(8)
C(7)-C(8)	1.363(3)	1.355(7)	1.352(7)	1.374(2)	1.3773(16)	1.369(6)	1.376	1.382	1.39 ₁		1.364(8)
C(8)-O(8)	_	_	_	1.340(2)	1.3527(14)	1.329(2)	1.331	1.33 ₃	1.32 ₃		1.413(7)
C(8)-C(9)	1.404(2)	1.410(6)	1.382(5)	1.407(2)	1.4272(16)	1.439(4)	1.431	1.425	1.425		1.402(8)
C(9)-C(10)	1.412(2)	1.414(5)	1.396(4)	1.410(2)	1.4221(15)	1.406(3)	1.410	1.417	1.414	1.372(4)	1.426(8)
Angles /degrees											
X(2)-X(1)-C(9)	122.6(2)	121.3(3)	124.1(3)	123.24(15)	117.75(9)	116.6(3)	118. ₆	119. ₀	119. ₇	124.3(2)	116.7(5)
X(1)-X(2)-C(3)	121.1(2)	121.8(3)	118.7(4)	119.9(2)	123.80(10)	125.0(2)	122.2	122.4	121.2	119.0(2)	125.3(6)
X(2)-C(3)-C(4)	119.1(2)	120.8(4)	120.4(3)	118.8(2)	118.95(10)	118.2(1)	119. ₇	119.4	$120{1}$	118.2(3)	118.1(6)
C(3)-C(4)-C(10)	120.6(2)	119.8(4)	120.6(3)	121.04(17)	119.51(10)	121.2(3)	$120{4}$	120.8	$120{0}$	121.2(3)	120.3(6)
C(6)-C(5)-C(10)	120.5(2)	119.6(4)	120.6(3)	119.64(16)	119.72(10)	119.0(2)	119. ₀	119. ₆	119. ₁		120.4(6)
C(5)-C(6)-C(7)	120.7(2)	120.7(4)	120.8(4)	122.09(8)	121.25(10)	122.6(2)	122.9	122.6	122.8		120.8(6)
C(6)-C(7)-C(8)	121.3(2)	121.4(4)	120.5(4)	120.3(2)	120.48(10)	121.5(1)	$120{1}$	$120{1}$	119.9		119.5(6)
C(7)-C(8)-O(8)	_	_	_	126.6(2)	119.26(10)	123.2(1)	125. ₈	123. ₆	$125{0}$		115.9(5)
C(7)-C(8)-C(9)	118.6(2)	119.0(4)	118.9(3)	117.96(15)	119.72(10)	117.1(3)	117. ₈	117. ₈	117.5		122.5(5)
O(8)-C(8)-C(9)	-	-	_	115.42(14)	121.02(9)	119.7(2)	116.4	118. ₆	117.5		121.5(8)
N(1)-C(9)-C(8)	120.5(2)	122.4(4)	120.43)	119.34(14)	118.12(9)	117.2(3)	114. ₇	115. ₈	114. ₈	109.4(2)	120.0(5)
N(1)-C(9)-C(10)	118.4(2)	116.9(3)	117.8(3)	118.81(15)	122.72(10)	122.2(1)	123. ₂	122.5	$122{1}$	118.6(3)	122.5(5)
C(8)-C(9)-C(10)	121.1(2)	120.6(4)	121.8(4)	121.82(15)	119.15(9)	120.5(2)	$122{0}$	122.6	122. ₈	119.0(2)	117.6(5)
C(4)-C(10)-C(5)	123.9(2)	122.0(8)	124.2(3)	124.51(16)	123.10(10)	123.9(2)	125. ₈	125.7	125.5		123.6(5)
C(4)-C(10)-C(9)	118.2(2)	119.4(4)	118.4(4)	117.33(17)	117.24(9)	116.8(2)	116. ₁	115.9	116.3	118.7(3)	117.2(5)
C(5)-C(10)-C(9)	117.9(2)	118.6(3)	117.4(3)	118.14(16)	119.66(10)	119.3(1)	118. ₁	$118{4}$	118.2		119.3(5)

Table S4 (a) Comparative geometries of quinoline-derived arrays (ox = oxinate = 8-quinolinolate)

^aRef.⁸; ^bref.²⁸; ^cref.²⁹; ^dthis work; C₆(Ar)/CNO₂ interplanar dihedral angles are 34.44(7), 4.80(10), 9.08(14)°; ^eref.^{51d} (100K); ^fin 'potassium quinolin-8-olate bis(quinolin-8-ol)', ref.⁵² (room-temperature); ^gmean values of the three distances for the three ligands in each of the isomorphous $P2_1/n$ (Z = 4) complexes *mer*-[Mox₃]·MeOH (M = Al (HQUALA01), Fe

(high-spin) MEQDES), Co (low-spin) (AJUJIY03). (Details for the individual ligands, metal-ligand distances and references are summarized in Table S5.); ^href.³⁰ (room-temperature); m1,2 are the 8-hydroxyquinoline picrate proto-Meisenheimer and the 2-hydroxymethylpyridine picrate Meisenheimer complexes. The common *ad-hoc* numbering scheme is as follows:

М	$A1^{a}$ (HOUAL A01)	~ >	Ea ^b (MEODES)	~ >	C_{α}^{c} (AIIIIIV(2)	~ >
	AI (IQUALAUI)	< >	re (MEQDES)	< >	1 007(1) 1 000(1) 1 000(1)	< >
O-M	1.850(2), 1.881(2), 1.841(3)	1.857	1.921(2), 1.908(2), 1.915(2)	1.915	1.907(1), 1.900(1), 1.899(1)	1.902
N-M'	2.074(3) , 2.026(3), 2.048(3)	2.05_{6}	2.237(2), 2.054(2), 2.272(2)	2.188	1.920(1), 1.928(1), 1.930(1)	1.926
N-2	1.330(5), 1.329(5), 1.331(5)	1.330	1.313(4), 1.324(3), 1.319(3)	1.319	1.322(2), 1.328(2), 1.326(2)	1.325
N-9	1.354(5), 1.364(6), 1.357(5)	1.358	1.358(4), 1.368(3), 1.363(3)	1.363	1.365(2), 1.372(2), 1.370(2)	1.369
2-3	1.396(6), 1.396(5), 1.399(5)	1.397	1.402(5), 1.401(4), 1.403(4)	1.402	1.413(2), 1.412(2), 1.410(2)	1.412
3-4	1.357(6), 1.366(7), 1.359(5)	1.361	1.331(7), 1.362(5), 1.354(5)	1.349	1.366(2), 1.372(3), 1.370(2)	1.366
4-10	1.423(6), 1.403(6) 1.417(5)	1.41_{4}	1.418(6), 1.417(4), 1.420(5)	1.418	1.420(3), 1.422(2), 1.418(2)	1.42_{0}
5-6	1.373(6), 1.361(6), 1.367(5)	1.367	1.362(7), 1.357(4), 1.359(5)	1.359	1.377(3), 1.378(2), 1.377(2)	1.377
5-10	1.408(6), 1.433(7), 1.422(5)	1.421	1.404(2), 1.407(4), 1.403(5)	1.40_{5}	1.415(2), 1.415(2), 1.419(2)	1.416
6-7	1.414(6), 1.405(6), 1.407(5)	1.409	1.409(6), 1.405(4), 1.411(4)	1.40_{8}	1.412(2), 1.410(2), 1.410(2)	1.411
7-8	1.371(5), 1.378(6), 1.380(5)	1.376	1.377(4), 1.380(3), 1.389(4)	1.382	1.388(2), 1.392(2), 1.393(2)	1.391
8-O	1.330(5), 1.330(4), 1.332(4)	1.331	1.334(3), 1.333(3), 1.322(3)	1.333	1.327(2), 1.322(2), 1.320(2)	1.323
8-9	1.433(5), 1.427(5), 1.433(5)	1.431	1.431(4), 1.415(3), 1.430(4)	1.425	1.426(2), 1.425(2), 1.425(2)	1.425
9-10	1.421(5), 1.405(5), 1.405(5)	1.41_{0}	1.418(4), 1.412(3), 1.422(4)	1.417	1.412(2), 1.413(2), 1.417(2)	1.41_{4}
• • •		110		110		110
2-N-9	118.3(3) 118.8(3), 118.6(3)	118.6	119.3(2), 118.9(2), 118.8(2)	119. ₀	120.1(1), 119.5(1), 119.4(1)	119.7
N-2-3	122.5(3), 122.1(4), 122.0(4)	122.2	122.5(3), 121.8(2), 122.8(2)	122.4	120.9(1), 121.1(2), 121.6(1)	121.2
2-3-4	119.7(4), 119.5(4), 119.8(4)	119.7	119.1(3), 119.9(3), 119.3(3)	119.4	120.0(2), 120.3(1), 120.0(1)	120.1
3-4-10	120.8(4), 120.3(3), 120.0(3)	120.4	121.5(3), 120.5(2), 120.6(3)	120.8	120.2(1), 120.0(1), 119.9(1)	120.0
6-5-10	118.8(4), 119.0(4), 119.3(3)	119. ₀	119.5(4), 119.7(2), 119.5(3)	119. ₆	119.2(1), 119.1(1), 119.0(1)	119. ₁
5-6-7	123.0(4), 123.0(4), 122.6(4)	122.9	123.0(4), 122.5(2), 122.3(3)	122.6	122.7(2), 122.7(2), 122.9(1)	122.8
6-7-8	119.9(4), 120.3(4), 120.1(3)	120.1	119.7(3), 120.1(2), 120.5(3)	120.1	119.8(2), 120.0(1), 120.0(1)	119.9
7-8-O	126.0(3), 126.0(3), 125.4(3)	125.8	123.5(2), 124.7(2), 122.8(2)	123.6	125.2(2), 125.0(1), 124.8(1)	125.0
7-8-9	118.1(3), 117.4(3), 117.9(3)	117.8	118.0(2), 117.7(2), 117.5(2)	117.7	117.2(2), 117.3(1), 117.5(1)	117.5
O-8-9	115.9(3), 116.5(3), 116.7(3)	116.4	118.6(2), 117.6(2), 119.7(2)	118. ₆	117.1(2), 117.7(1), 117.8(1)	117.5
N-9-8	114.6(3), 114.7(3), 114.9(3)	114.7	116.4(2), 114.8(2), 116.3(2)	115.8	115.0(1), 114.4(1), 115.0(1)	114.8
N-9-10	123.9(3), 122.6(4), 123.2(4)	123.2	122.0(3), 123.0(2), 122.5(2)	122.5	122.5(2), 122.9(1), 122.5(1)	122.6
8-9-10	121.5(3), 122.7(4), 121.9(3)	122.0	121.6(3), 122.2(2), 121.1(2)	122.6	122.5(2), 122.7(1), 122.5(1)	122.6
4-10-5	126.4(4), 125.6(4), 125.4(3)	125.8	126.1(3), 126.2(2), 124.9(3)	125.7	125.6(1), 125.6(1), 125.2(2)	125.5
4-10-9	115.0(4), 116.8(4), 116.4(3)	116. ₁	115.7(4), 115.9(2), 116.0(2)	115.9	116.2(1), 116.2(1), 116.6(1)	116.3
5-10-9	118.6(4), 117.6(4), 118.2(3)	118.1	118.2(3), 117.9(2), 119.0(3)	118.4	118.2(2), 118.1(1), 118.2(1)	118.2
8-O-M	117.6(2), 115.4(2), 115.6(2)	116.2	117.8(1), 115.0(2), 117.8(2)	116.9	111.4(1), 111.6(1), 111.0(1)	111.3
2-N-M	131.9(3), 130.9(3), 132.6(2)	131.8	133.1(2), 130.8(2), 134.6(2)	132.8	129.2(1), 129.9(1), 131.0(1)	130.0
9-N-M	109.8(2), 110.3(2), 108.8(2)	110.7	107.7(2), 110.3(2), 106.4(2)	108.1	110.6(1), 110.5(1), 109.7(1)	109.3

Table S4 (b) Chelated oxinate ligand geometries (ligands 1-3, <>) in isomorphous $P2_1/n$ mer-[Mox₃]·MeOH (M = Al, Fe, Co)*

*The methanol OH hydrogen approaches the oxygen atom of ligand 2 (M = Al), ligand 1 (Fe, Co) at *ca* 1.9Å. The iron(III) and cobalt(III) complexes are high-and low-spin respectively. 'The central distance of each meridian is shown in **bold**. The numbering schemes in the various determinations differ; that applied globally here is that of Table S4(a).

^a H. Schmidbaur, J. Lettenbauer, P. L. Wilkinson, O. Muller, O. Kumberger, Z. Naturforsch., Teil B, 1991, 46, 901 (HQUALA01, 233 K).

^b G. Chen, Acta Crystallogr., 2006, E62, m3383 (MEQDES, '283-303' K).

^c D. Mandal, M. Mikuriya, H.-K. Fun and D. Ray, *Inorg. Chem. Comm.*, 2007, **10**, 657 (AJUJIY03, '283-303' K).

Compound	picH (1,2)*	pip	mor (1,2)	2mp (1,2)	bpy	phen	dmp	ohq	dpa	tpy
Distances (Å)										
C(1)-O(1)	1.318(2), 1.338(2)	1.2395(12)	1.261(2), 1.261(2)	1.256(3), 1.257(3)	1.246(3)	1.271(2)	1.239(2)	1.231(2)	1.247(2)	1.2360(11)
C(1)-C(2)	1.418(2), 1.412(3)	1.4535(14)	1.452(2), 1.437(2)	1.448(3), 1.453(3)	1.463(3)	1.488(3)	1.452(3)	1.449(2)	1.454(2)	1.4658(13)
C(1)-C(6)	1.416(3), 1.402(3)	1.4551(14)	1.447(2), 1.438(2)	1.458(3), 1.455(3)	1.463(3)	1.488(3)	1.452(3)	1.447(2)	1.455(2)	1.4640(13)
C(2)-C(3)	1.386(3), 1.384(3)	1.3700(14)	1.377(2), 1.373(2)	1.380(3), 1.379(3)	1.391(3)	1.397(3)	1.371(3)	1.361(2)	1.374(2)	1.3810(12)
C(5)-C(6)	1.379(3), 1.373(3)	1.3722(14)	1.380(2), 1.370(2)	1.373(3), 1.367(3)	1.374(3)	1.412(3)	1.368(2)	1.368(2)	1.374(2)	1.3660(12)
C(3)-C(4)	1.373(3), 1.380(3)	1.3909(15)	1.380(2), 1.384(2)	1.385(3), 1.379(3)	1.388(4)	1.426(3)	1.383(3)	1.384(2)	1.388(2)	1.3895(2)
C(4)-C(5)	1.384(3), 1.381(3)	1.3885(15)	1.388(2), 1.392(2)	1.402(3) 1.399(3)	1.402(4)	1.408(3)	1.381(3)	1.377(2)	1.387(2)	1.3967(12)
C(2)-N(2)	1.461(2), 1.459(3)	1.4511(13)	1.458(2), 1.458(2)	1.459(3), 1.453(3)	1.453(3)	1.492(2)	1.447(7)	1.452(2)	1.456(2)	1.4487(11)
C(6)-N(6)	1.471(2), 1.482(3)	1.4495(13)	1.461(2), 1.464(2)	1.468(3), 1.472(3)	1.469(3)	1.481(3)	1.450(2)	1.450(2)	1.456(2)	1.4577(12)
C(4)-N(4)	1.469(2), 1.464(2)	1.4355(13)	1.451(2), 1.442(2)	1.444(3), 1.445(3)	1.454(3)	1.471(2)	1.438(3)	1.441(2)	1.446(2)	1.4362(11)
N(2)-O(21)	1.238(2), 1.239(3)	1.2284(13)	1.217(2), 1.229(2)	1.235(2), 1.205(2)	1.239(3)	1.250(2)	1.227(2)	1.212(2)	1.228(2)	1.2306(14)
N(6)-O(61)	1.222(2), 1.204(3)	1.2263(13)	1.228(2), 1.220(2)	1.230(3), 1.226(3)	1.231(3)	1.252(2)	1.223(2)	1.201(2)	1.219(2)	1.2275(12)
N(2)-O(22)	1.213(2). 1.219(3)	1.2326(13)	1.229(8), 1.225(2)	1.238(3), 1.221(3)	1.235(3)	1.260(2)	1.225(2)	1.229(2)	1.234(2)	1.2381(10)
N(6)-O(62)	1.232(2), 1.216(3)	1.2363(13)	1.228(2), 1.221(2)	1.230(3), 1.226(3)	1.228(3)	1.266(2)	1.229(2)	1.210(3)	1.228(2)	1.2310(12)
N(4)-O(41)	1.220(2), 1.222(2)	1.2329(15)	1.219(2), 1.219(2)	1.241(3), 1.234(3)	1.239(4)	1.254(2)	1.228(2)	1.223(2)	1.234(2)	1.2446(10)
N(4)-O(42)	1.232(2), 1.232(2)	1.2379(14)	1.223(2), 1.228(2)	1.235(2), 1.237(3)	1.236(4)	1.267(2)	1.231(2)	1.226(2)	1.236(2)	1.2352(12)
O(1)O(21)	2.563(2), 2.579(3)	2.7540(13)	2.702(2), 2.736(2)	2.755(3), 2.707(3)	2.733(3)	2.898(2)	2.701(2)	2.666(2)	2.684(2)	2.6348(11)
O(1)O(61)	2.586(2), 2.599(3)	2.7361(12)	2.722(2), 2.718(3)	2.860(3), 2.826(3)	2.861(3)	2.748(2)	2.659(2)	2.638(2)	2.652(3)	2.7014(12)

Table S5 Non-hydrogen atom picrate and picric acid geometries (this work, except picH)

Angles (deg.)										
O(1)-C(1)-C(2)	124.1(2), 125.0(2)	124.30(9)	125.21(12), 122.93(15)	127.2(2), 126.8(2)	125.4(2)	122.7(2)	125.2(2)	122.13(15)	124.13(12)	125.47(9)
O(1)-C(1)-C(6)	120.9(2), 119.3(2)	124.72(9)	123.11(12), 124.59(14)	121.6(2), 121.7(2)	123.1(2)	125.9(2)	123.2(2)	126.10(15)	124.28(12)	122.97(9)
C(2)-C(1)-C(6)	115.0(4), 115.8(2)	110.99(8)	111.64(11), 112.35(12)	111.2(2), 111.4(2)	111.3(2)	111.5(2)	111.5(2)	111.74(14)	111.57(11)	111.47(7)
C(1)-C(2)-C(3)	123.4(2), 122.7(2)	125.13(9)	123.88(12), 124.70(13)	124.2(2), 123.2(2)	123.6(2)	125.9(2)	124.3(2)	124.83(15)	124.68(12)	123.77(8)
C(1)-C(6)-C(5)	122.8(2), 123.1(2)	124.88(9)	125.06(12), 124.39(12)	125.9(2), 125.8(2)	125.7(2)	123.1(2)	124.0(2)	123.67(15)	124.25(12)	124.74(8)
C(2)-C(3)-C(4)	117.7(2), 117.8(2)	118.71(9)	119.52(12), 118.28(12)	119.7(2), 120.4(2)	119.7(2)	117.8(2)	119.0(2)	118.78(15)	118.80(12)	119.41(8)
C(4)-C(5)-C(6)	118.4(2), 118.2(2)	118.87(9)	118.10(12), 118.54(13)	117.7(2), 117.9(2)	118.1(2)	120.3(2)	119.4(2)	119.82(15)	119.27(13)	118.91(8)
C(3)-C(4)-C(5)	122.7(2), 122.5(2)	121.28(9)	121.57(12), 121.69(12)	121.3(2), 121.0(2)	121.5(2)	121.4(2)	121.3(2)	121.07(15)	121.29(12)	121.29(8)
C(1)-C(2)-N(2)	119.9(2), 120.3(2)	118.26(8)	120.43(11), 118.96(12)	120.0(2), 120.4(2)	119.6(2)	117.8(2)	119.3(2)	118.25(14)	119.23(11)	119.93(7)
C(1)-C(6)-N(6)	120.6(2), 121.6(2)	118.43(8)	119.32(11), 118.98(14)	116.8(2), 116.9(2)	117.0(2)	120.9(2)	119.4(2)	119.66(14)	119.84(12)	118.81(7)
C(3)-C(2)-N(2)	116.9(2), 117.0(2)	116.60(9)	115.67(11), 116.29(13)	115.8(2), 116.3(2)	116.7(2)	116.3(2)	116.4(2)	116.79(15)	116.05(12)	116.24(8)
C(5)-C(6)-N(6)	116.6(2), 115.3(2)	116.66(9)	115.57(11), 116.58(14)	117.3(2), 117.2(2)	117.2(2)	115.9(2)	116.6(2)	116.62(14)	115.89(12)	116.44(8)
C(3)-C(4)-N(4)	119.0(2), 119.0(2)	119.28(10)	119.22(12), 118.91(12)	119.2(2), 119.4(2)	119.4(2)	119.5(2)	119.6(2)	119.32(15)	119.17(12)	119.96(8)
C(5)-C(4)-N(4)	118.3(2), 118.6(2)	119.43(10)	119.21(12), 119.40(12)	119.6(2), 119.5(2)	119.2(2)	119.0(2)	119.1(2)	119.54(15)	119.52(12)	118.75(8)
C(2)-N(2)-O(21)	118.6(2), 118.4(2)	118.38(9)	120.02(12), 118.70(16)	119.3(2), 120.3(2)	119.4(2)	118.5(2)	118.5(2)	120.09(15)	119.29(14)	119.52(3)
C(6)-N(6)-O(61)	119.7(2), 119.8(2)	119.03(9)	119.52(12), 118.40(7)	118.0(2), 118.7(2)	117.6(2)	119.8(2)	118.7(2)	119.99(15)	118.21(16	118.45(8)
C(2)-N(2)-O(22)	118.8(2), 119.1(2)	118.00(9)	117.69(12), 117.73(15)	118.2(2), 118.7(2)	118.7(2)	117.5(2)	118.5(2)	116.90(14)	117.76(13)	118.59(9)
C(6)-N(6)-O(62)	117.0(2), 117.5(2)	117.43(9)	117.36(12), 117.75(15)	117.7(2), 117.1(2)	118.3(2)	118.1(2)	118.7(2)	118.81(15)	118.79(12)	118.21(8)
C(4)-N(4)-O(41)	117.8(2), 117.9(2)	118.37(10)	118.51(13), 119.01(12)	118.9(2), 118.8(2)	118.7(2)	118.8(2)	118.5(1)	118.07(15)	118.27(11)	119.22(8)
C(4)-N(4)-O(42)	117.9(2), 117.6(2)	118.43(11)	118.68(13), 118.13(12)	118.4(2), 118.6(2)	118.3(2)	118.1(2)	118.4(2)	118.76(16)	118.10(13)	118.08(7)
O(21)-N(2)-O(22)	122.6(2), 122.5(2)	123.61(10)	122.26(13), 123.57(17)	122.5(2), 121.0(2	122.0(2)	124.0(2)	123.0(2)	123.00(15)	122.94(13)	121.88(9)
O(61)-N(6)-O(62)	124.2(2), 122.7(2)	123.53(10)	123.12(12), 123.85(19)	124.3(2), 124.2(2)	124.0(3)	122.0(2)	122.6(2)	121.20(17)	122.84(14)	123.33(8)
O(41)-N(4)-O(42)	123.3(2), 124.5(2)	123.20(10)	122.75(13), 122.86(12)	122.7(2), 122.6(2)	123.0(2)	123.1(2)	123.2(2)	123.16(16)	123.62(12)	122.69(9)

C ₆ /NO ₂ (2)	9.63(7), 3.33(9)	40.58(5)	33.10(9), 36.22(7)	55.01(1), 54.8(1)	26.8(1)	51.84(8)	23.0(1)	34.98(3)	27.36(6)	0.86(4)
C ₆ /NO ₂ (6)	1.1(2), 5.12(8)	35.82(5)	33.18(8), 21.98(8)	23.2(1), 12.9(1)	51.8(1)	12.62(8)	21.33(8)	9.42(9)	21.64(8)	29.39(4)
C ₆ /NO ₂ (4)	19.05(8), 18.91(11)	4.05(5)	4.16(7), 16.27(8)	13.7(1), 2.4(1)	5.1(1)	7.98(8)	3.44(8)	4.52(7)	5.20(6)	9.24(4)
C ₆ /cation	-	4.05(5)	4.16(7), 16.27(8)	13.7(1), 2.4(1)	5.1(1)	7.98(8)	3.44(8)	4.52(7)	5.20(6)	9.24(4)

Values are given for the compounds experimentally determined in this work, together with those of the parent picric acid (**picH**)^{1g}.

* Calculated from the data of **PICRAC13** (two molecules)^{1g}. The *ad-hoc* numbering scheme can be found in Table 3.

Table S6 Interspecies approaches (Å) in the compounds of Table 1

Interspecies interactions, corroborated by the fingerprint plots, denoted $(\overline{R})(\overline{L})(\overline{M})$ for the right, left, and middle spike, (\overline{C}) for the central marker, $(\overline{P})_{R,L}$ for lateral peripheral spikes, parenthetically (), [] for any second component of an asymmetric unit ($\overline{}$ denoting the inverse symmetry of the fingerprint plot assignment); see also main text. In the salts, cation...cation approaches do not feature in the fingerprint plots (which are of the picrate entity) and therefore carry no assignment. For the present determinations refined protonic hydrogen atom locations are included, as well as those, refined or not, for the other associated structures.

(α) (picH) (Pna2₁) (PICRAC13^{1g}) (Fig. 1)

Picric acid (picH) (x2)

There are two independent molecules in the asymmetric unit, forming largely independent arrays within the crystal, linked by a small number of CH...O(nitro) and other approaches, as given below.

(A) Protonating hydrogen atom approaches/distances within each of the individual molecules of the asymmetric unit; here and elsewhere, the O(phenolic)...O(*o*-nitro) pairs of distances are also given, any pair 'chelating' a protonating (cationic or solvent) hydrogen atom being shown **bold**.

H(1)O(1,2)	0.78(3), 1.84(3)	H(4)O(8,9)	0.85, 1.82(4)
O(1)O(2,6)	2.563(2) , 2.586(2)	O(8)O(9,13)	2.579(3) , 2.599(3)

(B) Other approaches/overlaps (<3.6 Å)

Screw-related approaches

Molecule 1...molecule 1' approaches

			10101	eeule 2noteeute 2 up	prodelies	
		$(1-x, y, \frac{1}{2}+z)$			$(2-x, 1-y, \frac{1}{2}+z)$	
O(5)	N(3)	3.194(2)	(C, \overline{C})	C(8)O(14)	3.260(3)	[C, C]
	<i>O</i> (<i>6</i>)	3.285(2)	(C,\overline{C})	C(9) <i>O</i> (14)	3.075(3)	[C, C]
	<i>O</i> (7)	3.346(2)	(C,\overline{C})	C(10) <i>O</i> (13)	3.496(3)	[C, Ū]
N(2)	<i>O</i> (6)	3.229(2)	(C, \overline{C})	O(14)	3.129(3)	[C, Ū]
C(4)	<i>O</i> (6)	3.355(2)	(C, \overline{C})	C(11)O(14)	3.404(3)	[C, Ū]
H(3),C(5)	<i>O</i> (1)	2.73(2), 3.166(2)	(L,\overline{R})			
O(7) <i>H</i> ,	<i>O</i> (1)	2.42(2), 2.910(2)	(\mathbf{R}, \mathbf{L})			
	<i>O</i> (2)	2.841(2)	(C,\overline{C})			

Molecule 2...*molecule 2'* approaches

n-Glide-related approaches

	$(\frac{3}{2}-x, y, z-\frac{1}{2})$			$(\frac{3}{2}-x, y, z-\frac{1}{2})$	
C(1) O(5)	3.323(2)	(C, \overline{C})	O(8)N(4)	3.221(3)	$[C,\overline{C}]$
C(6) O(5)	3.069(2)	(C, \overline{C})	<i>O</i> (10)	3.122(3)	$[C,\overline{C}]$
N(3) O(5)	3.249(2)	(C, \overline{C})	O(13) <i>C</i> (7)	3.168(3)	[C, Ū]
O(6) <i>H</i> (3), <i>C</i> (5)	2.35(2), 3.287(2)	$(\mathbf{R}, \overline{L})$	<i>C</i> (8)	3.229(3)	$[C,\overline{C}]$
<i>O</i> (5)	3.257(2)	(C, \overline{C})	N(4)	3.247(3)	$[C,\overline{C}]$
<i>O</i> (7)	3.014(2)	(C, \overline{C})	<i>O</i> (8)	3.089(3)	$[C,\overline{C}]$
			<i>O</i> (9)	3.093(3)	[C, C]

	$(^{5}/_{2}-x, y, z-\frac{1}{2})$		$(\frac{1}{2}-x, y, \frac{1}{2}+z)$	
$[C,\overline{C}]$	2.913(2)	C(11) <i>O</i> (11)	$2.92(3), 3.314(2) (L, \overline{R})$	H(2),C(3) <i>O</i> (2)
[C, Ū]	3.156(2)	C(12)O(11)	$3.349(2) (C, \overline{C})$	O(4)N(1)
[C, Ū]	3.291(2)	N(6) O(11)	$3.381(2)$ (<i>C</i> , \overline{C})	<i>O</i> (2)
$\begin{bmatrix} C & \overline{C} \end{bmatrix}$	3.326(3)	<i>O</i> (<i>12</i>)	$3.139(3) (C, \overline{C})$	<i>O</i> (<i>3</i>)
[C, Ū]	3.122(3)	O(14)O(12)		

a-Glide-related approaches

Molecule 1molecule 1' approaches		Molecule 2molecule 2' approaches				
(x-1/2, y, z)			(<i>x</i> −¹⁄2, 1− <i>y</i> , <i>z</i>)			
C(1) <i>O</i> (6)	$3.226(2)$ (<i>C</i> , \overline{C})	C(12) <i>O</i> (12)	3.273(3) [C, C]			
<i>O</i> (7)	$3.468(3)$ (<i>C</i> , \overline{C})	N(6) O(12)	3.149(3) [C, <u>c</u>]			
C(2) <i>O</i> (6)	$3.447(2)$ (<i>C</i> , \overline{C})	O(8) O(14)	3.179(3) [C, <u>c</u>]			
<i>O</i> (7)	3.185(2) (C, C)	O(13)O(14)	2.807(3) [C, \overline{c}]			
C(3) <i>O</i> (7)	3.276(3) (C, C)	O(14)O(12)	3.100(3) [C, \overline{c}]			
O(1) <i>O</i> (6)	3.132(2) (C, C)	H(6),C(11)O(13)	2.54(3), 3.590(3) [L, R]			
O(2) <i>O</i> (6)	$3.271(2) (C, \overline{C})$					

Translation-related a	approaches
-----------------------	------------

Molecule 1...molecule 2' approaches

	(3/2-x, y, z-1/2)		(x-1, y, z)
C(2) <i>O</i> (10)	3.447(3) (C) , [C]	H(2),C(3) <i>O</i> (9)	$2.77(3), 2.986(3)$ (L), [\overline{R}]
N(1) <i>O</i> (10)	2.978(2) (<i>C</i>), [<i>c</i>]	<i>O</i> (11)	2.53(2), 3.465(2) (L), [\overline{R}]
O(2) <i>H</i> (5), <i>C</i> (9)	2.64(2), 3.459(2) (R), [L]	O(3) <i>C</i> (10)	3.115(2) (C), [c]
<i>O</i> (10)	3.027(2) (<i>C</i>), [<i>c</i>]	N(5)	2.771(2) (C), [C]
O(3) <i>O</i> (10)	3.292(2) (C) , [C]	<i>O</i> (11)	3.015(2) (C), [c]
<i>O</i> (11)	3.326(2) (<i>C</i>), [<i>c</i>]	<i>O</i> (<i>12</i>)	3.055(1) (C) , [C]
H(5), C(9)	2.62(2), 3.518(3) (R), [L]		
			(x, y, z)

Molecule 1...molecule 2' approaches

	(3/2-x, y, 1/2+z)	C(4) O(9)	3.427(3) (C), [c]
O(4) <i>C</i> (8)	3.266(3)		
C(9)	3.329(3)	Molecule 2molecule 2' ap	pproaches

Molecule 2...molecule 2' approaches

(*x*–1, *y*, *z*)

H(4),O(8)... O(12) 2.64(4), 3.083(2) [L, \overline{R}] 3.216(2) [C, <u>c</u>] O(9)...*O*(11)

	(3/2-x, y, 1/2+z)
N(4) <i>O</i> (8)	3.221(3) [C, C]
O(13)	3.247(3) [C, C]

(β)(i) (**pyH**)(**pic**) (**monoclinic**) (**P2**₁/*c*) (**PYRPIC02**^{11c}) (Fig. S1(β)(i))

Pyridinium picrate (monoclinic)

(A) Hydrogen atom approaches/distances within the ion-pair of the asymmetric unit (also evident in Fig. $S1(\beta)(i)$)

O(7)H(8),N(4)	1.96(3), 2.631(4) (R)	O(7)H(3),C(7)	2.49(3), 2.964(4) (R)
O(1)H(8),N(4)	2.28(3), 2.927(4) (<i>R</i>)	O(1)H(7),C(11)	2.66(3), 3.179(4) (R)
N(4)-H(8)	0.82(3)	O(7) O(1,6)	2.675(3) , 2.724(3)

(B) Other approaches/overlaps (< 3.6 Å)

Approaches within the *b*-translation-related stacks of anions and cations.

Anionanion' approaches	(Fig. S2(β)(i))	Anioncation' approaches	
C(1) <i>C</i> (2)	$3.533(5) (C, \overline{C})$	O(1)N(4)	3.271(4) (<i>C</i>)
C(2)O(2)	$3.314(3)$ (<i>C</i> , \overline{C})	O(7) <i>C</i> (7)	3.416(4) (<i>C</i>)
C(5) <i>C</i> (4)	$3.538(3)$ (<i>C</i> , \overline{C})	O(1) <i>C</i> (11)	3.473(4) (C)
N(1) <i>O</i> (2)	$3.173(3)$ (<i>c</i> , \overline{c})		
O(1) <i>O</i> (2)	$3.131(3) (C, \overline{C})$	Cationcation' approaches	
N(2) <i>O</i> (<i>3</i>)	3.324(3) (C, C)	C(8) <i>C</i> (7)	3.515(4)
O(4) <i>O</i> (3)	$3.187(4)$ (<i>C</i> , \overline{C})	C(9) <i>C</i> (10)	3.565(4)
O(6) <i>C</i> (1)	$3.238(3)$ (<i>C</i> , \overline{C})	C(9) <i>C</i> (11)	3.551(4)
<i>C</i> (6)	$3.183(3) (C, \overline{C})$	C(10) <i>C</i> (11)	3.513(4)
N(3)	3.171(3) (C, C)		
<i>O</i> (5)	$3.240(4)$ (<i>C</i> , \overline{C})		
<i>O</i> (7)	$3.255(3)$ (<i>c</i> , \overline{c})		

Approaches between anion and cation columns

Anionanion' approaches (screw-related)			Anion <i>cation'</i> app	proaches (glide-related)
	(x, y-1/2, 1/2-z)			$(x, \frac{3}{2}-y, \frac{1}{2}+z)$
O(3) <i>H</i> (1), <i>C</i> (3)	2.76(3), 3.204(4)	$(\mathbf{R}, \overline{L})$	O(4) <i>C</i> (9)	3.491(4) (C)

O(3)...
$$O(3)$$
 3.188(3) (C, \overline{C}) O(4)... $H(6), C(10)$ 2.82(3), 3.243(3) (**R**)

Anion...anion' approaches (glide-related)

 $(x, \frac{1}{2}-y, \frac{1}{2}+z)$

	$(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$		O(4)H(5), C(9)	2.39(3), 3.124(4)	(R)
O(5) <i>H</i> (2), <i>C</i> (5)	2.70(3), 3.291(4)	(R,\overline{L})	<i>C</i> (10)	3.397(4)	(C)

Anion...cation' approaches (inversion-related)

(x, 1-y, z)

- O(2)...*H*(6),*C*(10) 2.80(3), 3.362(3) (**R**)
 - H(7), C(11) 2.63(3), 3.224(3) (**R**)

$$(1-x, 2-y, \frac{1}{z})$$

- O(6)...H(4), C(8) 2.92(3), 3.212(4) (**R**)
 - *C*(9) 3.3412(3) (*C*)

$$(x, 2-y, z)$$

O(2)...*H*(6),*C*(10) 2.83(3), 3.347(2) (**R**)

NO₂/C₆ interplanar dihedral angles: 20.45(12), 12.04(12), 37.00(12)°.

(β)(ii) (**pyH**)(**pic**) (**triclinic**) ($P \overline{1}$) (**PYRPIC03**^{11c}) (Fig. S1(β)(ii))

Pyridinium picrate (triclinic)

(A) Hydrogen atom approaches/distances within the ion-pair of the asymmetric unit

O(7)H(8),N(4)	1.82(5), 2.666(5) (<i>R</i>)	O(7)H(3),C(7)	2.64(4), 3.061(6) ((R)
O(1)H(8),N(4)	2.21(5), 2.875(6) (R)	O(1)H(7),C(11)	2.55(5), 3.089(6) (R)
N(4)-H(8)	0.95(5)	O(7)O(1,6)	2.700(5) , 2.771(6)	

(B) Other approaches/overlaps (< 3.6 Å)

Inversion-related approaches

Anionanion' appro	baches (Fig. $S2(\beta)(ii)$)		Anioncation' appro	aches
	(1-x, y, 1-z)			(1-x, y, z)
C(2) <i>C</i> (6)	3.501(7)	(C, \overline{C})	C(3) <i>C</i> (7)	3.252(8) (C)
H(1),C(3) <i>O</i> (6)	2.96(5) 3.288(8)	(L,\overline{R})	C(4)N(4)	3.496(7) (C)
C(4) <i>O</i> (7)	3.494(6)	(C, \overline{C})	<i>C</i> (7)	3.442(8) (C)
C(5) <i>O</i> (1)	3.500(7)	(C, \overline{C})	C(5) <i>C</i> (11)	3.535(9) (C)
C(1) <i>O</i> (7)	3.301(7)	(C, \overline{C})		
C(2) <i>O</i> (7)	3.236(6)	(C,\overline{C})		(1-x, y, 1-z)
N(1) <i>O</i> (7)	3.169(6)	(C, \overline{C})	N(2) <i>N</i> (4)	3.338(6) (C)
O(7) <i>O</i> (7)	3.354(5)	(C, \overline{C})	<i>C</i> (7)	3.460(7) (<i>C</i>)
			O(3) <i>C</i> (7)	3.333(8) (C)
			O(4)N(4)	3.214(7) (<i>C</i>)
	(1-x, y-1, 1-x)	z)	<i>C</i> (11)	3.277(8) (C)
H(2),C(5) <i>O</i> (5)	2.64(5), 3.491(6)	(L, \overline{R})		

O(5) <i>O</i> (5)	3.365(6)	(C, \overline{C})			
				(2-x, y, z)	
	$(\bar{x}, \bar{y}, 1-z)$		O(6) <i>H</i> (4), <i>C</i> (8)	2.55(6), 3.195(6)	(R)
O(3) <i>O</i> (3)	3.195(6)	(C, \overline{C})	H(5), C(9)	2.60(5), 3.233(7)	(R)
H(1),C(3)	2.74(5), 3.517(6)	$(\mathbf{R}, \overline{L})$			
				$(1-x, 1-y, \frac{1}{z})$	
Cationcation' appro	aches		O(2) <i>H</i> (6), <i>C</i> (10)	2.44(5), 3.207(7)	(R)
	(2-x, y, z)				
H(3) <i>H</i> (4)	2.54(8)				
	Transl	ation-related a	pproaches		
Anion <i>anion'</i> approa	aches		Anioncation' appr	roaches	
	(x, 1+y, z)			(<i>x</i> , <i>y</i> –1, <i>z</i>)	
O(1) <i>O</i> (5)	3.203(6)	(C, \overline{C})	O(5) <i>H</i> (7), <i>C</i> (11)	2.69(5), 3.484(7)	(R)
Anion <i>cation'</i> appro	aches			(<i>x</i> -1, <i>y</i> -1, 1+ <i>z</i>)	
	(<i>x</i> –1, <i>y</i> , 1+ <i>z</i>)		O(4) <i>H</i> (5), <i>C</i> (9)	2.41(5), 3.144(6)	(R)
O(3)H(4), C(8)	2.64(6), 3.265(7)	(R)	H(6), C(10)	2.84(5), 3.334(7)	(R)
<i>C</i> (7)	3.475(7)	(<i>C</i>)			

 NO_2/C_6 interplanar dihedral angles: 20.9(3), 6.1(5), 41.4(3)°.

(β)(iii) (**pyH**)(**pic**) (**·naph**) (*P***2₁/***a*) (**PYNPCR**²⁰) (Fig. S1(β)(iii))

Pyridinium picrate : 1-naphthylamine (major component)

Contacts related only by the ionic components of this structure are tabulated. There are very few associated with the 1-naphthylamine component (the NH_2 residue excepted*), in keeping with its disordered nature. In this and a number of other structures obtained from the literature (and/or CCDC), the basic ion-pair component of the asymmetric unit may be generated by a symmetry transformation. This is noted as a footnote where relevant.*

(A) Hydrogen atom approaches/distances within the fundamental anion...cation pair (cation at $(\frac{1}{2}-x, y+\frac{1}{2}, \frac{1}{z})$

O(1)H,N(4)	1.8 ₇ , 2.694(7) (R)	N(4)-H(4)	0.8_{6}
O(7)H,N(4)	2.2 ₉ , 2.811(7) (R)	O(1)O(2,7)	2.800(8), 2.684(7)

(B) Other approaches/overlaps (< 3.6 Å)

	oroaches	Screw-related appr	Inversion-related approaches	
	aches	Anioncation' approa	aches (Fig. S2(β)(iii))	Anionanion' appro
	$(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2})$		$(1-x, 2-y, \bar{z})$	
	3.478(8)	O(1) <i>C</i> (7)	3.437(9) (C, C)	C(1) <i>C</i> (4)
(R)	2.79, 3.082(9)	O(7) <i>H</i> , <i>C</i> (11)	$3.483(10)$ (<i>C</i> , \overline{C})	C(2) <i>C</i> (5)
			3.483(10) (C, C)	C(3) <i>C</i> (6)
	$(\frac{1}{2}-x, \frac{1}{2}+y, 1-z)$		$3.572(10)$ (<i>C</i> , \overline{C})	C(4) <i>C</i> (6)
(C)	3.446(9)	O(2) <i>C</i> (8)	3.318(9) (C, C)	N(2) <i>O</i> (1)
			$3.373(9)$ (<i>C</i> , \overline{C})	O(1)O(5)

		Translation-related approaches		
	(1-x, 2-y, 1-z)	Anioncation' appr	roaches	
N(1)O(4)	3.216(9) (C, C)		(x, 1+y, z)	
O(2) <i>O</i> (4)	$3.389(9)$ (C, \overline{C})	O(2) <i>H</i> , <i>C</i> (11)	2.6 ₈ , 3.460(8) (R)	
O(3) <i>O</i> (4)	3.207(11) (<i>c</i> , <i>c</i>)	O(3) <i>H</i> , <i>C</i> (10)	2.6 ₆ , 3.395(10) (R)	

Anion...cation' approaches

	(1-x, 2-y, 1-z)	
O(5) <i>H</i> , <i>C</i> (10)	2.77, 3.325(10)	(R)

O(7) <i>H</i> , <i>C</i> (8)	2.5 ₉ , 3.444(9)	(R)
Glide-related approaches	s	
Amoncuion approache	$(\frac{1}{2}+x, \frac{3}{2}-y, z)$	
O(4) <i>H</i> , <i>C</i> (7)	2.61, 3.230(9)	(R)

(x, y, z-1)

NO₂/C₆ interplanar dihedral angles: 43.6(5), 1.14(8), 1.26(3)°.

*The CIF for this compound has the asymmetric unit cation related to the anion of the pair by the transformation $(\frac{1}{2}-x, y+\frac{1}{2}, \overline{z})$. The CCDC CIF has discarded the su's given in the original paper; these have been restored for the non-hydrogen atoms for the present calculations. Hydrogen atoms were not included in the available records and have been generated here provisionally for the ionic components. The closest approach to the naphthylamine N(5) as presented is from O(6) (*x*, *y*, 1+*z*) 3.24(2) Å.

The literature numbering scheme has been adapted for present purposes as shown above.

(β)(iv) [(2mpH)(pic)] (x2) (P_1) (this work) (Fig. S1(β)(iv))

2-Methylpyridinium picrate (n = 1,2)

(A) Hydrogen atom approaches/distances within the two independent ion-pairs of the asymmetric unit (Fig. 2(a))

O(n1)H,N(0n1):	n = 1	1.80(3), 2.685(2)	(R)	O(n21)H,N(0n1):	$n = 1 \ 2.25(3), 2.770(3) \ (R)$
	n = 2	1.84(3), 2.664(2)	[R]		$n = 2 \ 2.24(4), \ 2.756(3) \ [R]$
O(n1)H(0nx),C(0n7):	n = 1	2.67(3), 3.531(3)	(R)	O(n21)H,C(0n2):	$n = 1 \ 2.78(3), \ 3.102(3) \ (\mathbf{R})$
	n = 2	2.59(3), 3.352(3)	[R]		n = 2 (3.23(3)), 3.341(3) [R]
O(n1)O(n21,n61)	n = 1	2.755(3) , 2.880(3)		N(0n1,2)-H(0n1,2)	0.92(3), 0.87(3)
	n=2	2.707(3) , 2.826(3)			

(B) Other approaches/overlaps

O(142)

Anionanion' appr	roaches	Anioncation' approach	nes
Inversion-related ap	pproaches	Inversion-related approa	aches
	(2-x, 1-y, z)		(1-x, 1-y, z)
N(12) <i>N</i> (12)	$3.343(3) \ (C, \overline{C})$	O(142) <i>H</i> , <i>C</i> (012)	2.47(3), 3.146(3) (<i>R</i>)
O(121)	$3.019(3) \ (C, \overline{C})$		
O(121)O(121)	$3.179(3) \ (C, \overline{C})$		(2-x, 1-y, z)
O(122)	$3.081(3) \ (C, \overline{C})$	O(141) <i>H</i> , <i>C</i> (013)	2.77(3), 3.213(3) (R)
		O(122) <i>H</i> , <i>C</i> (012)	2.61(2), 3.446(3) (<i>R</i>)
	$(1-x, 1-y, z)$ (Fig. S2(β)(iv))		
O(141)O(161)	3.178(3) (C, C)		(2-x, y, z)
O(161) <i>C</i> (13)	$3.332(3)$ (<i>c</i> , \overline{c})	O(161) <i>H</i> , <i>C</i> (014)	2.58(2), 3.333(3) (R)
<i>C</i> (<i>14</i>)	$3.291(3)$ (<i>c</i> , \overline{c})		
N(14)	$3.110(3) (C, \overline{C})$		(1-x, 1-y, 1-z)
O(122) <i>H</i> , <i>C</i> (15)	2.40(2), 3.357(3) (R , L)	O(141) <i>H</i> , <i>C</i> (022)	2.95(3), 3.475(3) (R)

3.145(3) (C, \overline{C})

H,*C*(023) 2.71(3), 3.409(3) (*R*)

	(1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)			(1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)
N(22) N(22)	3.291(3)	[C, Ū]	O(222) <i>H</i> , <i>C</i> (022)	2.50(2), 3.283(3) [<i>R</i>]
<i>O</i> (221)	3.109(4)	$[C,\overline{C}]$	O(241) <i>H</i> , <i>C</i> (023)	2.87(3), 3.196(3) [R]
O(221)O(221)	3.377(4)	[C, C]		
<i>O</i> (222)	3.030(4)	$[C, \overline{C}]$		(<i>x</i> -1, 1- <i>y</i> , <i>z</i>)
			O(241) <i>H</i> , <i>C</i> (025)	2.40(3), 3.346(7) [R]
	$(\bar{x}, 1-y, 1-z)$ (Fig. S2(β)(iv))			
O(241) <i>O</i> (261)	3.153(3)	$[C,\overline{C}]$		$(\bar{x}, 1-y, 1-z)$
N(24) <i>O</i> (261)	3.377(3)	$[C,\overline{C}]$	O(242) <i>H</i> , <i>C</i> (022)	2.44(2), 3.208(3) [R]
O(261) <i>H</i> , <i>C</i> (23)	3.00(2), 3.210(3)	$[R, \overline{L}]$		
<i>C</i> (24)	3.373(3)	$[C,\overline{C}]$		(1-x, y, 1-z)
			O(261) <i>H</i> , <i>C</i> (024)	2.58(2), 3.475(3) [R]
Translation-related ap	pproaches		Translation-related ap	proaches
	(1+x, y, z)			(x-1, y, z)
O(121) <i>N</i> (16)	3.333(3)	(C,\overline{C})	O(161) <i>C</i> (012)	3.474(3) (C)
O(162)	3.054(3)	(C, \overline{C})	<i>C</i> (013)	3.460(4) (C)
O(221) <i>N</i> (26)	3.283(3)	[C, Ū]	<i>C</i> (014)	3.475(3) (C)
O(262)	3.078(3)	[C, <u>C</u>]	<i>C</i> (015)	3.492(3) (C)
O(222) <i>H</i> , <i>C</i> (25)	2.49(2), 3.385(3)	$[\mathbf{R}, \overline{L}]$	O(162) <i>C</i> (016)	3.460(3) (C)
<i>O</i> (242)	3.177(3)	[C, C]	H(01A),C(017)	2.80(4), 3.459(4) (<i>R</i>)
			O(261) <i>C</i> (022)	3.474(3) [C]
Anionother anion a	pproaches		<i>C</i> (023)	3.479(3) [C]
	(x, y, z) (Fig. S2(β)(iv)		<i>C</i> (024)	3.440(3) [C]
C(13)O(222)	3.216(4)	$(C), [\overline{C}]$	<i>C</i> (025)	3.397(3) [C]
C(14)O(222)	3.291(3)	(C), [C]	<i>C</i> (026)	3.400(3) [C]
N(14) <i>H</i> , <i>C</i> (23)	3.00(2), 3.393(3)	$(\mathbf{R}), [\overline{L}]$	O(262)H(02C), C(027)	2.83(4), 3.482(4) [<i>R</i>]
O(142) <i>C</i> (23)	3.362(3)	(C), [C]		
<i>C</i> (24)	3.451(3)	(C), [C]		(x, y, z)
N(24)	3.320(3)	$(C), [\overline{C}]$	O(21) <i>N(021)</i>	2.664(2) [C]
<i>O</i> (241)	3.077(3)	(C), [C]	H(02A),C(027)	2.59(3), 3.352(3) [R]

Anion...other anion approaches (translation-related)

Anion...other cation approaches (inversion-related)

	(x, y, z)		(1– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)
O(142) <i>C</i> (23)	3.302(3) (C), [c]	O(141) <i>H</i> , <i>C</i> (022)	2.95(3), 3.475(3) (R)
<i>C</i> (24)	3.451(3) (C) , [C]	H,C(023)	2.71(3), 3.409(3) (R)
N(24)	3.320(3) (C) , [C]		
<i>O</i> (241)	3.077(3) (C) , [C]		(1-x, 1-y, z)
		O(242)H,C(013)	2.55(3), 3.388(3) [R]
	(1+x, y, z)	O(262) <i>C</i> (017)	3.482(4) [C]
O(11) O(262)	3.211(3) (C), [C]		
C(11) O(262)	3.339(3) (C), [C]	Cationcation' approa	ches (inversion-related)
C(12) <i>O</i> (262)	3.338(3) (C), [C]		(1-x, y, 1-z)
H,C(25)	2.95(2),2.938(3) (P_L),[$\overline{P_R}$]	C(023) <i>C</i> (027)	3.530(4)
O(122) C(24)	3.160(3) (C), [C]	N(021) <i>C</i> (025)	3.442(3)
H,C(25)	2.95(2), 3.446(3) (R) , [L]		
N(12) O(262)	3.243(3) (C), [C]		

	(x, y, z)	
N(14) <i>H</i> , <i>C</i> (23)	3.00(2), 3.393(3)	(\mathbf{R}) , $[\mathbf{L}]$

 NO_2/C_6 interplanar dihedral angles:

22.44(9), 12.81(9), 54.93(9) ° (picrate 1); 12.79(15), 2.3(2), 125.45(10)° (picrate 2).

(β)(v) (**dpaH**)(**pic**) (**P2**₁/*c*) (this work) (Fig. S1(β)(v)

(2-Pyridinium)(2-pyridyl)amine picrate

(A) Hydrogen atom approaches/distances within the ion-pair of the asymmetric unit (Fig. 2(b))

O(1)H,N(01)	2.92(2), 2.755(2)	(R)
O(21)H,N(01)	2.44(2), 3.121(2)	(R)
N(011)H,N(021)	1.81(2), 2.617(2)	
N(01)-H(01),N(021)-H(021)	0.91(2), 0.93(3)	

(B) Other approaches/overlaps (< 3.6 Å)

Anion...anion' approaches

O(1)...*C*(4)

C(1)...*C*(3)

C(2)...C(5)

C(3)...*C*(6)

C(5)...N(2)

C(6)...O(22)

N(6)...O(22)

O(61)...O(22)

C(4)

C(6)

O(22)

Inversion related approaches

O(21)H,C(025)	2.69(2), 3.448(2)	(R)
O(61)H,C(015)	2.68(2), 3.161(2)	(R)
O(1)H,C(015)	2.83(2), 3.424(2)	(R)
O(1)O(21,61)	2.684(2) , 2.652(3)	

 $(x, \frac{1}{2}-y, \frac{1}{2}+z)$ (Fig. S2(β)(v) (left))

Anion...cation' approaches

Screw-axis related approaches

nouches		
_		

3.460(2) (*c*, \overline{c})

 $3.335(2) (C, \overline{C})$

 $3.533(2) (c, \overline{c})$

 $3.587(2) (C, \overline{C})$

 $3.470(2) (C, \overline{C})$

 $3.520(2) (C, \overline{C})$

 $3.407(2) (C, \overline{C})$

 $3.325(2) (C, \overline{C})$

 $3.218(2) (C, \overline{C})$

 $2.988(2) (C, \overline{C})$

 $3.218(3) (C, \overline{C})$

(1-x, y, 1-z) (Fig. 2(β)(v) (right))

C(3) <i>N</i> (011)	3.396(2)	(C)
<i>C</i> (016)	3.337(2)	(<i>C</i>)
N(2) <i>N</i> (021)	3.188(2)	(<i>C</i>)
<i>C</i> (022)	3.497(2)	(<i>C</i>)
O(21) <i>N</i> (021)	3.343(2)	(<i>C</i>)
C(022)	3.325(2)	(<i>C</i>)
O(22)N(021)	3.027(2)	(<i>C</i>)
<i>C</i> (022)	3.243(2)	(<i>C</i>)
C(026)	3.163(2)	(<i>C</i>)
O(41) <i>C</i> (015)	3.300(2)	(C)

	(2-x, y, 1-z)
N(6) <i>O</i> (62)	3.045(2) (C, C)
C(6) <i>O</i> (62)	$3.112(2) (C, \overline{C})$
O(62)O(62)	3.077(2) (C , \overline{C})

O(22)...O(62) 3.248(2) (C, \overline{C})

(1-x, y, 1-z)

Screw-related approaches

	$(x, \frac{1}{2}-y, \frac{1}{2}+z)$		
O(41)O(21)	3.278(2)	(C, \overline{C})	

. .

Cation...cation approaches (inversion-related)

	(1-x, y, z)
C(016) <i>C</i> (023)	3.446(2)
N(021) <i>C</i> (026)	3.404(2)
C(022)N(01)	3.417(2)
C(022) <i>C</i> (026)	3.411(2)
C(023)N(01)	3.496(2)

Translation-related approaches

(x-1, y, z)

O(22)...*H*,*C*(014) 2.47(2), 3.355(2) (**R**)

O(42)...*H*,*C*(025) 2.66(2), 3.246(2) (*R*)

(x, y, 1+z)

- O(41)... N(011) 3.264(2) (C)
 - H, N(021) 2.53(2), 3.073(2) (**R**)
 - *H*,*C*(022) 2.55(2), 3.196(2) (*R*)

(1+x, y, 1+z)

- O(42)...H, C(023) = 2.76(2), 3.321(6) (**R**)
 - H,C(024) 2.57(2), 3.237(2) (**R**)
- O(1)...*H*,*C*(022) 2.57(2), 3.224(2) (*R*)

Inversion-related approaches

(1-x, 1-y, 1-z)O(42)...*H*,*C*(024) 2.89(2), 3.365(2) (**R**)

 $(2-x, y^{-1}, z)$

O(61)...*H*,*C*(013) 2.53(3), 3.247(3) (*R*)

O(62)...*H*,*C*(014) 2.81(3), 3.261(2) (*R*)

H, C(015) = 2.68(2), 3.161(2) (**R**)

(1-x, y, z)

- O(61)...*H*,*C*(022) 2.42(2), 3.076(2) (*R*)
 - *H*,*C*(023) 2.86(2), 3.331(3) (*R*)
- O(1)... *H*,*C*(022) 2.57(2), 3.224(2) (*R*)

NO₂/C₆ interplanar dihedral angles: 26.82(7), 4.26(8), (1-x, y, 1-z)22.81(14)°. O(42)...H,C(025) 2.66(2), 3.246(2) (**R**)

(γ)(i) (**pipH**)(**pic**) (P 1) (**VAZJAI**²¹) (Fig. S1(γ)(i))

Piperidinium picrate

(A) Hydrogen atom approaches/distances within the ion-pair of the asymmetric unit

O(1)H(3),N(4)	1.82(3), 2.767(2)	(R)	N(4)-H(3,4)	0.95(3), 0.86(2)
O(2)H(3),N(4)	2.50(2), 2.996(3)	(R)	O(1)O(2,7)	2.702(2) , 2.796(3)
O(2)H(5),C(7)	2.90, 3.437(3)	(R)		

(B) Other approaches/overlaps (< 3.6 Å) (Fig. S2(γ)(i))

Anioncation' approaches		Anioncation' appre	Anionanion' approaches (inversion-related)	
Inversion-related approaches		Inversion-related ap	$(1-x, 2-y, z)$ (Fig. S2(γ)(i))	
, z)	(x, 1-y, z)		3.342(3) (C, C)	O(2)O(5)
'1(2) (2.28(2), 2.971(2	O(3) <i>H</i> , <i>N</i> (4)	$3.188(3) (C, \overline{C})$	N(2)
50(2) (2.85, 3.060(2	O(3)H(5), C(7)	3.299(3) (c, c)	<i>C</i> (4)
(2.87	H(6)	3.437(3) (C, C)	<i>C</i> (5)
			3.424(3) (C, C)	N(1) <i>C</i> (4)
,)	(1-x, 2-y, z)		3.354(3) (<i>C</i> , C)	<i>C</i> (5)
9(3) (2.58, 3.399(3	O(4)H(7), C(8)	3.517(3) (C, C)	C(1) <i>C</i> (3)
			3.460(3) (C, C)	C(2) <i>C</i> (3)
1– <i>z</i>)	(1-x, 2-y, 1-x)		3.493(3) (C, C)	C(4)
51(4) (2.90, 3.451(4	O(6) <i>H</i> (10), <i>C</i> (9)		

	$(\bar{x}, 1-\bar{y}, \bar{z})$			
O(2) <i>O</i> (2)	$3.247(2) \ (c, \overline{c})$			
<i>O</i> (<i>3</i>)	3.292(2) (C, C)		(x, 2-y, 1-z)	
		O(7) <i>H</i> (11), <i>C</i> (10)	2.53, 3.290(3)	(R)
	(x, 2-y, z)	<i>C</i> (11)	3.475(3)	(R)
C(2) <i>C</i> (4)	3.489(3) (C, C)			
C(1) <i>C</i> (3)	3.590(3) (C, <u>C</u>)		(x, 2-y, z)	
C(1) <i>C</i> (4)	$3.589(3)$ (<i>c</i> , \overline{c})	O(4) <i>H</i> (14), <i>C</i> (11)	2.45, 3.361(4)	(R)
C(3) <i>C</i> (6)	3.597(3) (C, C)	O(5)H(4),N(4)	2.74(3), 3.288(3)	(R)
	$(1-x, 3-y, \overline{z})$	Translation-related a	pproaches	
O(5)H(2),C(5)	2.67, 3.545(3) $(\mathbf{R}, \overline{L})$		(x, 1+y, z)	
		O(6) <i>H</i> (5), <i>C</i> (7)	2.92, 3.402(4)	(R)
		O(7) <i>H</i> (6), <i>C</i> (7)	2.74, 3.452(4)	(R)
			(<i>x</i> , <i>y</i> , <i>z</i> –1)	
		O(4) <i>H</i> (9), <i>C</i> (9)	2.87, 3.463(3)	(R)
		H(11),C(10)	2.70, 3.300(2)	(R)
		O(6)H(13),C(11)	2.63, 3.274(2)	(R)

NO₂/C₆ interplanar dihedral angles: 15.96(13), 8.69(11), 50.43(9)°.

(γ)(ii) (**pipH**)(**pic**)(**·pip**) (**P2**₁/**n**) (this work) (Fig. 7)

Piperidinium picrate: piperidine

(A) Hydrogen atom approaches/distances within the asymmetric unit (Fig. 2(c))

O(1)H(11A),N(011)	2.565(15), 3.0507(13) (R)	O(1)H(21A),N(021) 2	.245(16), 2.8143(12)	(R)
O(61)H(11A),N(011)	2.585(15), 3.3027(13) (R)	O(21)H(21A),N(021) 2	.602(15), 3.3525(13)	(R)
O(61)H(12B),C(012)	2.99(2), 3.389(2) (R)	O(21)H(25B),C(025)	2.61(2), 3.395(2)	(R)
H(11A)-N(011);N(021)-H(21A,B)	0.87(2); 0.91(1), 0.88(1)	N(011)H(21B),N(021)	1.81(2), 2.6895(14)	
		O(1)O(21,61) 2.	7540(13), 2.7361(12)	

(B) Other approaches/overlaps (< 3.6 Å)

Anion...anion' approaches (inversion-related)

	(1		:))	- $ -$ (Eia 62(a)(ii))	
	(1-x, y, z)		1))	(x, y, z) (Fig. 52(γ)(11))	
(C, \overline{C})	3.4039(14)	O(1) <i>C</i> (4)	4) (C, \overline{C})	3.2656(14)	O(1)N(4)
(C, \overline{C})	3.3513(13)	O(1)N(4)	4) (C, \overline{C})	3.2978(14)	C(1) <i>C</i> (4)
(C, \overline{C})	3.4039(15)	C(1) <i>C</i> (3)	4) (C, \overline{C})	3.4298(14)	<i>C</i> (5)
(C, \overline{C})	3.2956(14)	<i>C</i> (4)	4) (C, \overline{C})	3.2642(14)	C(2) <i>C</i> (5)
(C, \overline{C})	3.3428(14)	C(2) <i>C</i> (5)	3) (C, \overline{C})	3.5788(13)	<i>C</i> (6)
(C, \overline{C})	3.3869(15)	<i>C</i> (6)	5) (C, \overline{C})	3.5712(15)	C(3) <i>C</i> (5)
(L, \overline{C})	2.77(1), 3.2694(14)	H,C(3) <i>C</i> (6)	4) (C, \overline{C})	3.3394(14)	<i>C</i> (<i>6</i>)
(L, \overline{R})	2.77(1), 3.2750(14)	<i>O</i> (61)	4) (C, \overline{C})	3.4843(14)	N(6)
(C, \overline{C})	3.4916(15)	C(5) <i>N</i> (2)	5) (L, \overline{R})	2.87(1), 3.2087(15)	H,C(3) <i>O</i> (62)
(L, \overline{R})	3.01(1), 3.3037(15)	H,C(5) <i>O</i> (22)	5) (C, \overline{C})	3.4227(15)	C(4) <i>C</i> (6)
(C, \overline{C})	3.4382(15)	C(6)O(22)			
(C, \overline{C})	3.1875(14)	O(22)N(6)			

Cationcation' approaches	(HH < 2.6 Å)	Anioncation' approac	ches
Glide-related approaches		Inversion-related approaches	
	$(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z)$		(1-x, y, z)
H(13A) <i>H</i> (25B)	2.46(3)	O(41) <i>H</i> (15A), <i>C</i> (015)	2.78(2), 3.447(2) (<i>R</i>)
H(14A) <i>H</i> (23A)	2.46(2)	H(16A),C(016)	2.70(2), 3.2147(2) (R)
H(25B)	2.57(3)	H(11A),N(011)	2.614(14), 3.2637(16) (R)
		O(42)H(21A),N(021)	2.544(13), 3.2247(13) (R)
	$(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z)$	H(22A),C(022)	2.747(15), 3.2409(15) (R)
H(15A) <i>H</i> (24B)	2.47(3)	H(23A),C(023)	2.859(17), 3.4961(16) (R)
Translation-related appr	oaches		$\left(\begin{array}{c} x, y, z \end{array}\right)$
	(1+x, y, z)	O(41) <i>H</i> (12B), <i>C</i> (012)	2.71(2), 3.631(2) (R)
H(16A) <i>H</i> (22A)	2.44(2)	O(42) <i>H</i> (26 <i>B</i>), <i>C</i> (025)	2.633(15), 3.504(2) (R)
			$(\bar{x}, \bar{y} - 1, \bar{z})$
		O(22) <i>H</i> (22A), <i>C</i> (022)	2.90(2), 3.2393(15) (R)
		H(22B)	2.74(2) (R)
			(1-x, y-1, z)
		O(22) C(016)	3.324(2) (C)
		Glide-related approache	s
			(x-1/2, 1/2-y, z-1/2)
		O(62) <i>H</i> (16B), <i>C</i> (016)	2.62(2), 3.422(2) (R)
		H(22B),C(022)	2.45(1), 3.366(2) (<i>R</i>)

NO₂/C₆ interplanar dihedral angles: 40.32(5), 4.98(6), 35.57(5)°.

(γ)(iii) [(morH)(pic)] (x2) (P1) (KOMTUC^{22a}) (Fig. S1(γ)(iii))

Morpholinium picrate (x2)

(A) Hydrogen atom approaches/distances within the 'fundamental cluster' (two ion-pairs)*

Cation related by (2-x, 1-y, 1-z)

O(9)H(5),C(8)	2.96(1), 3.280(2)	[R]
O(9)H(8),N(4)	1.89(2), 2.684(14)	[R]
O(14)H(8),N(4)	2.23(2), 2.923(2)	[R]
H(9),C(9)	2.69(1), 3.131(2)	[R]
N(4)H(7,8)	0.90(2), 0.93(2)	
O(1)O(2,6)	2.7736(13) , 2.8190(14)	

(B) Other approaches/overlaps Anion...anion' approaches

Inversion-related approaches

 $(2-x, 1-y, \overline{z})$ (Fig. S2(γ)(iii)(lower))

- C(1)...C(5) 3.519(2) (C, \overline{C})
- C(3)...O(6) 3.113(2) (C, \overline{C})
- C(4)...C(6) 3.534(2) (C, \overline{C})

Cation related by $(2-x, y, z)$				
(R)				
(R)				
(R)				
(R)				
(. (. (.				

Anion... cation' approaches

Inversion-related approaches

(2-x, 1-y, z)

C(3)...*H*(23),*C*(20) 2.97(2), 3.395(2) (*P_R*)

0	(6)	3.175(2)	(C, \overline{C})		(2-x, y, z)	
O(1) <i>O</i>	(4)	3.2783(13)	(C,\overline{C})	O(4) <i>H</i> (20), <i>N</i> (8)	2.53(2), 2.869(2)	(R)
N(2)0	(6)	3.065(2)	(C,\overline{C})	H(19)	2.69(2)	(R)
O(5) <i>O</i>	(6)	3.0952(14)	(C,\overline{C})	H(21),C(19)	2.52(2), 3.121(2)	(R)
				O(5) <i>H</i> (24), <i>C</i> (20)	2.610(15), 3.432(2)	(R)
		$(2-x, 2-y, \frac{1}{z})$		O(6) <i>H</i> (22), <i>C</i> (19)	2.46(2), 3.368(2)	(R)
N(2)0	(4)	3.079(2)	(C,\overline{C})			
O(4) <i>O</i>	(4)	2.9767(13)	(C,\overline{C})		(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)	
O(4) <i>O</i>	(5)	3.1933(15)	(C,\overline{C})	O(10) <i>H</i> (15), <i>C</i> (17)	2.56(1), 3.3078(14)	[R]
(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>) (Fig. 2	2(γ)(iii)(upper))			(1-x, 1-y, 1-z)	
C(11)0	C(13)	3.520(2)	$[C,\overline{C}]$	O(10) <i>H</i> (9), <i>C</i> (9)	2.50(2), 3.414(2)	[R]
C(12)0	C(14)	3.548(2)	$[C,\overline{C}]$			
C(14)e	O(10)	3.241(2)	$[C,\overline{C}]$		(1-x, 1-y, z)	
C(15)0	O(10)	3.161(2)	$[C,\overline{C}]$	O(15) <i>H</i> , <i>C</i> (18)	2.71(2), 3.259(2)	[R]
O(10)	N(6)	3.145(2)	$[C,\overline{C}]$			
O(10)	O(12)	2.9937(13)	$[C,\overline{C}]$	Translation-related a	pproaches	
O(6)H	(1),C(3) 2.	98(2), 3.113(2)	$(\boldsymbol{R}, \overline{L})$		(x, y, z)	
				O(13) <i>H</i> (10), <i>C</i> (9)	2.48(2), 3.149(2)	[R]
		$(2-x, 2-y, \frac{1}{z})$		O(12) <i>H</i> (23), <i>C</i> (20)	2.529(14), 3.3427(14) [R]
N(5)0	(11)	3.2372(14)	$[C,\overline{C}]$	O(16)H(7),N(4)	1.94(2), 2.801(2)	[R]
O(10)	O(11)	3.2777(13)	$[C,\overline{C}]$			
O(11)	O(11)	3.0611(12)	$[C,\overline{C}]$		(1+x, 1+y, z)	
				H(1) H(22), C(19)	2.37(2), 2.9299(15)	(M)
Translatio	n-related approaches			C(11) <i>H</i> (5), <i>C</i> (8)	2.97(2), 3.400(2)	$[P_R]$
		(x-1, y, z)		O(9) H(5), C(8)	2.99(2), 3.467(2)	[R]
N(5)0	(14)	3.3909(15)	$[C,\overline{C}]$			
O(11)	O(14)	3.1133(14)	$[C,\overline{C}]$		(1+x, y, z)	
C	D(15)	3.2441(12)	$[C,\overline{C}]$	H(14)H(9), C(9)	2.33(2), 2.94(2)	[M]
H,C(13)	<i>O</i> (15) 2.	49(2), 3.439(2)	$[\overline{L}, \overline{R}]$	O(12) <i>H</i> (11), <i>C</i> (10)	2.62(2), 3.381(2)	[R]

	(1+x, y, z)	
O(3) <i>H</i> (2), <i>C</i> (5)	2.49(2), 3.444(2)	$(\boldsymbol{R}, \boldsymbol{L})$
<i>O</i> (7)	3.286(2)	(C, \overline{C})
O(2) <i>N</i> (<i>3</i>)	3.369(2)	(C, \overline{C})
<i>O</i> (7)	3.027(2)	(C, \overline{C})

Anion...*other cation'* approaches Inversion-related approaches

$$(1-x, y, z)$$

O(6)...H(3),C(7) 2.47(2), 3.263(2) (**R**)

	(1-x, 1-y, z)	
O(7) <i>H</i> (10), <i>C</i> (9)	2.47(2), 3.127(2)	(R)
H(11),C(10)	2.75(2) 3.273(2)	(R)

Anion...other anion' approaches

Inversion-related approaches

	(2-x, 1-y, z)	
C(1) <i>N</i> (6)	3.235(2) (C) , [C]	
<i>O</i> (12)	2.972(2) (C) , [C]	
O(1) <i>N</i> (6)	3.0012(14) (C) , [C]	
C(2)O(12)	3.488(2) (C), [C]	
C(6) <i>O</i> (12)	3.065(2) (C), [C]	
O(1) <i>C</i> (14)	3.3911(15) (C), [c]	
<i>O</i> (<i>12</i>)	3.1833(13) (C) , [C]	
<i>O</i> (<i>13</i>)	3.2554(13) (C) , [C]	
O(7) <i>H</i> (14), <i>C</i> (15)	2.73(2), 3.464(2) $(\mathbf{R}), [\mathbf{L}]$	
O(12)	3.3528(14) (C), [C]	

_

Translation-related	approaches
---------------------	------------

[R]	2.57(2), 3.153(2)	O(11) <i>H</i> (16), <i>C</i> (17)
[R]	2.90(2), 3.408(2)	H(17),C(18)
[M]	2.49(2)	H(13)H(18)
[M]	2.32(2), 2.94(2)	H(14) <i>H</i> , <i>C</i> (9)

(x+1, y+1, z)

(x, 1+y, z)

O(5)...*H*(12),*C*(10) 2.60(2), 3.392(2) (*R*)

Cation...cation' approaches

Translation-related approaches

	(x-1, y, z)	
O(8) <i>H</i> (20), <i>N</i> (8)	1.94(2), 2.8183(12)	(R)

	(1+x, y, z)
H(15),C(17)O(8)	2.67(2), 3.321(2)
H(17),C(18)O(8)	2.97(2), 3.204(2)

NO₂C₆ interplanar dihedral angles:

32.00(5), 12.23(6), 51.83(5) (picrate 1); 51.90(5), 4.15(10), 32.78(5)° (picrate 2)

(γ)(iv) 2[(morH)(pic)] (·H₂O) (C2/c) (this work) (Fig. S1(γ)(iv))

Morpholinium picrate (n = 1,2) : hydrate

(A) Hydrogen approaches/distances (Fig. 2(d)) within the fundamental cluster (two ion-pairs plus water)

O(11)H(01A),N(011)	1.97(2), 2.808(2)	(R)
O(21)H(01B),N(011)	1.88(3), 2.705(2)	[R]
O(01w)H(02A),N(021)	2.00(2), 2.810(2)	
O(121)H(02F),C(023)	2.63(2), 3.554(3)	(R)
O(11)O(121,161)	2.702(2), 2.722(2)	

O(11)...H(0wa),O(01w) 2.23(3), 3.018(2) (**R**) O(121)...H(0wa),O(01w) 2.11(3), 2.936(2) (**R**) O(21)...H(0wb),O(01w) 1.84(3), 2.763(2) [**R**] O(21)...O(221,261) 2.736(2), 2.718(3)

 $N(011)-H(01A,B) \ 0.85(2) \ (x2); \ N(021)-H(02A,B) \ 0.84(2), \ 0.90(3); \ O(01w)-H(0wa,b) \ 0.96(3), \ 0.95(3).$

(B) Other approaches/overlaps (< 3.6 Å)

Anionanion' approaches			Anionother anion' app	roaches
Screw-related approaches			Glide-related approaches	3
	$(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z)$		(x-1/2, 1/2-y, z-1/2)	⁄2) (Fig. S2(γ)(iv))
N(12) <i>O</i> (162)	3.299(2)	(C, \overline{C})	C(11)N(24)	3.265(2) (C), [c]
O(122) <i>N</i> (16)	3.100(2)	(C, \overline{C})	<i>O</i> (241)	3.394(2) (<i>C</i>), [<i>c</i>]
O(161)	3.269(2)	(C, \overline{C})	<i>O</i> (242)	3.338(2) (<i>C</i>), [<i>c</i>]
O(162)	3.051(2)	(C,\overline{C})	C(12)N(24)	3.497(2) (<i>C</i>), [<i>c</i>]
H,C(13) <i>O</i> (161)	2.76(2) , 3.593(2)	(L, \overline{R})	O(241)	3.350(2) (<i>C</i>), [<i>c</i>]
			C(13) <i>C</i> (23)	3.390(2) (<i>C</i>), [<i>c</i>]
Glide-related approaches			C(14) <i>C</i> (23)	3.463(2) (<i>C</i>), [<i>c</i>]
	$(1-x, y, \frac{1}{2}-z)$		<i>C</i> (24)	3.436(2) (<i>C</i>), [<i>c</i>]
C(21)N(24)	3.326(2)	$[C,\overline{C}]$	C(15) <i>C</i> (24)	3.529(2) (C), [c]
<i>O</i> (241)	3.405(2)	$[C,\overline{C}]$	<i>C</i> (25)	3.461(2) (C), [c]
C(23) <i>C</i> (23)	3.426(2)	$[C,\overline{C}]$	C(16)N(24)	3.491(2) (C), [c]
C(24)C(24)	3.476(2)	$[C,\overline{C}]$	<i>O</i> (242)	3.359(2) (C), [C]

<i>C</i> (25)	3.451(2) [C, C]	N(14) <i>C</i> (21)	3.449(2) (C), [C]
<i>C</i> (26)	3.554(2) [C, C]	<i>C</i> (22)	3.400(2) (C), [c]
C(25) <i>C</i> (25)	3.185(2) [C, C]	O(141) <i>O</i> (221)	3.261(3) (C), [c]
C(26) <i>N</i> (24)	3.405(2) [C, C]	O(142) <i>C</i> (21)	3.122(2) (C) , [C]
O(242)	3.370(2) [C, C]	<i>C</i> (26)	3.245(2) (C) , [C]
O(242) <i>N</i> (26)	3.308(2) [C, C]	O(161) <i>O</i> (242)	3.303(2) (<i>C</i>), [<i>c</i>]
O(262)	$3.239(2) \ [C, \overline{C}]$		

Inversion-related approaches

N(16)...*O*(222)

O(161)...O(222)

O(162)...O(222)

H,C(23)

Inversion-related approac	ches	(1-x, 1-y, 1-z)		
	(1– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)	O(122) <i>H</i> , <i>C</i> (25)	2.69(2), 3.478(2) (R), [L]	
O(261)O(261)	$3.201(3)$ [C, \overline{C}]	<i>O</i> (262)	3.357(2) (C), [C]	

Anioncation	' approaches
-------------	--------------

Translation-related approaches

	(x, y, z)
O(11) <i>C</i> (016)	3.458(2) (C)

O(222)...*H*(02*H*),*C*(025) 2.63(2), 3.549(2) [*R*]

O(242)...*H*(02*D*),*C*(022) 2.33(3), 2.983(2) [*R*]

Glide-related approaches

Inversion-related approaches

O(221)...*H*(02*J*),*C*(026)

	(x-1/2, 1/2-y, z-1/2)	Anionother cation' approaches Screw-related approaches		
O(142) <i>H</i> (01C), C(012)	2.61(2), 3.426(2) (R)			
			(¹ / ₂ - <i>x</i> , <i>y</i> - ¹ / ₂ , ¹ / ₂ - <i>z</i>)	
	$(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z)$	H,C(15)	<i>O</i> (<i>024</i>) 2.54(3), 3.299(2)	(L)
O(241) <i>H</i> (02 <i>G</i>), <i>C</i> (025)	2.31(2), 3.080(2) [R]	O(141)H(02C)	<i>C(022)</i> 2.36(3), 3.206(3)	(R)

 $(\frac{1}{2}-x, \frac{1}{2}-y, 1-z)$

 $(\frac{5}{2}-x,\frac{1}{2}-y,z)$

2.90(3), 3.300(2) **[***R***]**

 $(^{3}/_{2}-x, \frac{1}{2}-y, 1-z)$

C(023) 3.403(3) (**C**)

(1-x, y, 1-z)

3.395(2) (C), [C]

3.270(2) (C), [C]

3.241(2) (C), [\overline{c}]

2.53(2), 3.393(2) (R), [L]

O(*024*) 3.239(2) (C)

O(142)...*H*(02*E*),*C*(023) 2.27(3), 3.089(2) (*R*)

O(024) 3.163(2) (C)

O(162)...*H*(02*H*),*C*(025) 2.98(3), 3.334(2) (*R*)

Inversion-related approaches

 $(\frac{1}{2}-x, \frac{1}{2}-y, 1-z)$

O(11)...*H*(02*B*),*N*(021) 2.32(2), 3.145(2) (*R*)

O(161)...*H*(02*B*),*N*(021) 2.34(2), 2.964(2) (*R*)

H(02C), C(022) 2.51(3), 3.082(3) (**R**)

Screw-related approaches

The oxygen atom of morpholinium 1

approaches the centre of the aromatic ring of anion 1, thus:

 $O(014)...C(11-16)(1-x, y, \frac{1}{2}-z)$

3.418(2), 3.243(2), 3.162(2), 3.190(2), 3.253(2), 3.319(2) (all (*C*))

 $(1-x, y, \frac{3}{2-z})$ O(242)...H(02A),N(021) 2.85(2), 2.913(2) [**R**] H(02B) 2.51(2) [**R**]

Cation...cation' approaches (screw-related)

$(1-x, y, \frac{1}{2}-z)$

 $C(013)...H(01E), C(013) \qquad 2.94(2), \, 3.496(2)$

NO₂C₆ interplanar dihedral angles:

21.57(8), 16.60(8), 35.67(6) (picrate 1); 37.21(8), 3.74(7), 32.69(9)° (picrate 2) (1-x, y, 1-z)O(222)...H(01G), C(015) 2.81(2), 3.124(2) **[R]**

H(011),*C*(016) 2.79(2), 3.354(2) **[***R***]**

O(262)...*H*(01*D*),*C*(012) 2.80(2), 3.321(2) **[***R***]**

H(01*F*),*C*(013) 2.63(2), 3.190(2) **[***R***]**

(δ)(i) (**bpyH**)(**pic**) (**P**1) (**UCOFUO**²³) (Fig. S1(δ)(i))

2,2'-Bipyridinium picrate

(A) Hydrogen atom approaches/distances within the ion-pair of the asymmetric unit

N(2)H,N(1)	2.21, 2.613(3)	O(4)H,C(5)	2.36, 3.284(3) (R)
O(5)H,N(1)	2.55, 3.204(2) (R)	O(1)O(2,7)	2.805(3), 2.691(3)
N(1)-H(1)	0.88		

(B) Other approaches/overlaps (< 3.6 Å)

Anionanion' approaches		Anio	oncation' approact	hes		
Inversion-related approaches		Tran	Transition-related approaches			
(2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>) (Fig	g. S2(δ)(i) (left))			(1+ <i>x</i> , 1+ <i>y</i> , <i>z</i> -1)		
O(1)O(5)	3.207(2) (C	$(,\overline{c})$ O((1) <i>H</i> , <i>C</i> (2)	2.37, 3.279(2)	(R)	
C(11)O(5)	3.204(2) (C	, ,	H(6), C(7)	2.42, 3.325(2)	(R)	
C(12)O(5)	3.475(2) (C	O((2) <i>H</i> , <i>C</i> (2)	2.63, 3.147(2)	(R)	
H(10),C(13) <i>C</i> (15)	3.52, 3.276(3) (P _L	(\overline{P}_{R})	<i>H</i> , <i>C</i> (3)	2.38, 3.028(2)	(R)	
<i>O</i> (6)	2.98, 3.485(3) (L	$,\overline{R})$ O((7) <i>H</i> (6), <i>C</i> (7)	2.65, 3.282(2)	(R)	
C(14) <i>C</i> (14)	3.502(3) (C	, , , , , , , , , , , , , , , , , , , 	H(7), C(8)	2.72, 3.323(2)	(R)	
<i>C</i> (15)	3.304(3) (C	, , , , , , , , , , , , , , , , , , , 				
<i>C</i> (<i>16</i>)	3.369(3) (C	$,\overline{C})$		(1+ <i>x</i> , <i>y</i> , <i>z</i> -1)		
N(4) <i>C</i> (11)	3.221(2) (C	$(,\overline{c})$ O((7) <i>H</i> , <i>C</i> (4)	2.68, 3.319(2)	(R)	
<i>C</i> (16)	3.235(3) (C	(\overline{C}) O((6) <i>H</i> , <i>C</i> (3)	2.75, 3.403(2)	(R)	
O(4) <i>C</i> (16)	3.287(2) (C	, ,				
N(5)	3.081(2) (C	$,\overline{C})$				
					(1+x, 1+y, z)	
------------------	-----------------------	--	------------------------------	---------------------------------	--	--------------
0((6)	3.281(2)	(C, \overline{C})	O(3) <i>H</i> (8), <i>C</i> (9)	2.64, 3.303(7)	(R)
O(5) <i>C</i> (1	11)	3.204(2)	(C, \overline{C})			
					(x, 1+y, z)	
		(2– <i>x</i> , 2– <i>y</i> , 1– <i>z</i>)		O(4) <i>H</i> (8), <i>C</i> (9)	2.89, 3.123(3)	(R)
N(3)	N(3)	3.377(3)	(C, \overline{C})			
	<i>O</i> (<i>3</i>)	3.124(2)	(C, \overline{C})	Inversion-related ap	proaches	
O(2)	<i>O</i> (<i>3</i>)	3.214(2)	(C,\overline{C})			
H(I)	10),C(13)	2.61, 3.488(3)	(\overline{L}, R)	(1-x, 1-y, 1-z)	(Fig. S2(δ)(i) (right))	
O(3)	<i>O</i> (<i>3</i>)	3.339(2)	(C,\overline{C})	O(2) <i>C</i> (9)	3.459(3)	(<i>C</i>)
H(1	(0), C(13)	3.01, 3.461(3)	(\overline{L}, R)	C(16) <i>N</i> (2)	3.416(2)	(<i>C</i>)
X				N(5) <i>N</i> (1)	3.165(2)	(<i>C</i>)
		(1-x, 1-y, 1-z)		<i>C</i> (1)	3.496(2)	(<i>C</i>)
O(5)	<i>O</i> (5)	3.366(2)	(C, \overline{C})	<i>C</i> (5)	3.399(3)	(C)
O(5)H((11),C(15)	2.48,3.204(3)	$(\mathbf{R}, \overline{L})$	O(6) <i>C</i> (5)	3.275(3)	(<i>C</i>)
				O(7)N(1)	3.171(2)	(C)
Cationco	ation' approa	ches		<i>C</i> (1)	3.096(2)	(C)
Inversion-	-related appro	baches		<i>C</i> (2)	3.293(2)	(<i>C</i>)
		(1-x, y, 2-z)		<i>C</i> (<i>3</i>)	3.490(2)	(<i>C</i>)
C(1) <i>C</i> (1)	3.457(3)		<i>C</i> (5)	3.392(3)	(<i>C</i>)
<i>C</i> (2	?)	3.499(3)				
C(2) <i>C</i> (6	6)	3.390(3)			(1- <i>x</i> , 1- <i>y</i> , 2- <i>z</i>)	
				O(4) <i>H</i> , <i>C</i> (3)	2.79, 3.401(3)	(R)
		$(\bar{x}, \bar{y}, 2-z)$		<i>H</i> , <i>C</i> (4)	2.94, 3.461(3)	(R)
C(2)H(7	7), <i>C</i> (8)	3.19, 3.468(3)				
C(3)	C(6)	3.594(3)			(1-x, y, 1-z)	
				O(6)H(7), C(8)	2.79, 3.368(4)	(R)
				H(8), C(9)	2.64, 3.292(4)	(R)
					$(2-x \ 1-y \ 1-z)$	
				O(1) <i>H</i> , <i>N</i> (1)	2.52, 2.922(3)	(R)
				O(1) C(5)	3.271(3)	(C)
				O(2) N(2)	3.280(2)	(C)
				<i>C</i> (10)	3.432(2)	(<i>C</i>)
ntomlonon di	hadral anala	a. 16 2 1 (9) 5 9 (7)	20,20,000			

 NO_2C_6 interplanar dihedral angles: 46.34(8), 5.8(2), 20.38(9)°;

the dihedral angle between the pair of pyridyl planes is $8.44(8)^{\circ}$.

(δ)(ii) (**bpyH**)(**pic**)(·**MeCN**) (**P**1) (this work) (Fig. S1(δ)(ii))

2,2'-Bipyridinium picrate : acetonitrile

(A) Hydrogen atom approaches within the ion-pair of the asymmetric unit (Fig. 2(e))

O(1)H,N(011)	2.18(4), 2.781(3) (R)	O(1)H,C(012)	2.50(3), 2.980(3) (R)
N(021)H,N(011)	2.22(4), 2.638(3)	O(21)H,C(012)	2.67(3), 3.452(3) (R)
N(011)-H(011)	0.85(3)	O(62)H,C(022)	2.67(3), 3.271(4) (R)
O(1)O(21,62)	2.733(3), 2.861(3)		

(B) Other approaches/overlaps (< 3.6 Å)

a-Translation-related approaches (1+x, y, z)

Anionanion' approaches		Cationcation' approaches	
C(1)O(1)	3.330(3) (C, C)	C(012) <i>C</i> (013)	3.366(4)
C(3) <i>C</i> (2)	$3.427(4)$ (<i>C</i> , \overline{C})	C(015) <i>C</i> (014)	3.571(4)
C(3) <i>O</i> (22)	3.380(4) (C, C)	C(016) <i>C</i> (014)	3.526(4)
C(4) <i>C</i> (2)	$3.522(4) \ (C, \overline{C})$	C(016) <i>C</i> (015)	3.394(4)
<i>C</i> (<i>3</i>)	3.534(4) (C, C)	N(021) <i>C</i> (026)	3.335(3)
C(5) <i>C</i> (1)	3.549(4) (C, C)	C(022) <i>C</i> (025)	3.527(4)
<i>C</i> (6)	3.417(4) (C, C)	<i>C</i> (026)	3.428(4)
C(6) <i>O</i> (1)	3.413(3) (C, C)	C(023) <i>C</i> (024)	3.356(4)
<i>C</i> (1)	3.509(4) (C, C)	C(025)	3.478(4)
N(4) <i>C</i> (4)	3.366(4) (C, C)	C(024) <i>C</i> (025)	3.560(4)
<i>C</i> (<i>3</i>)	3.472(4) (C, C)	N(021) <i>C</i> (016)	3.411(3)
O(42) <i>C</i> (4)	$3.320(4)$ (C, \overline{C})	C(026) <i>C</i> (015)	3.579(4)

<i>C</i> (5)	3.488(4)	(C, \overline{C})	<i>C</i> (016)	3.551(3)
N(6) <i>O</i> (61)	3.364(4)	(C,\overline{C})		
O(62) <i>O</i> (61)	3.353(3)	(C, \overline{C})	Anioncation' appr	oaches
			O(1)N(011)	3.344(3) (C)
			<i>C</i> (012)	3.107(3) (C)
			O(21) <i>C</i> (012)	3.304(4) (C)
			O(62)N(021)	3.165(3) (C)
	Other translation	-related ap	oproaches (anioncation')	
	(2+x, 1+y, z)			(1+x, 1+y, z)
O(41) <i>H</i> , <i>C</i> (015)	2.45(4), 3.318(4)	(R)	O(42) <i>H</i> , <i>C</i> (025)	2.99(3), 3.331(3) (R)
O(42) <i>H</i> , <i>C</i> (025)	2.59(3), 3.467(3)	(R)		
	Inversion-rela	ated appro	paches (anioncation')	
	(x, 1-y, z)			(1-x, 1-y, 1-z)
O(22) <i>H</i> , <i>C</i> (013)	2.89(3), 3.428(3)	(R)	O(61) <i>H</i> , <i>C</i> (023)	2.91(3), 3.463(4) (R)
H,C(014)	2.64(3), 3.295(3)	(R)	H,C(024)	2.82(4), 3.356(4) (R)
	$(1-x, 1-y, \frac{1}{z})$			
O(21) <i>H</i> , <i>C</i> (013)	2.86(3), 3.441(4)	(R)		

 NO_2/C_6 interplanar dihedral angles: 25.89(11), 6.0(2), 50.60(12)°; the dihedral angle between the pair of pyridyl planes is 5.84(9)°.

(δ)(iii) [**bpy'H**₂)(**pic**)₂] (x0.5) (P 1) (**KAMPIY**²⁴) (Fig. S1(δ)(iii))

4,4-BipyridylH²⁺₂ bis(picrate)

(A) Hydrogen atom approaches/distances within the asymmetric unit

O(1)H,N(1)	1.86, 2.647(2) (R)	O(1)H,C(5)	2.88, 3.162(2) (R)
O(7)H,N(1)	2.49, 3.097(3) (R)	O(2)H,C(5)	2.53, 3.414(2) (R)
N(1)-H(1)	0.86	O(7)H(2),C(1)	2.989(2), 3.372(3) (R)
O(1)O(2,7)	2.726(2), 2.687(2)		

(B) Other approaches/overlaps (< 3.6 Å)

Anion...anion' approaches

Inversion-related approaches

Anion...cation' approaches Inversion-related approaches

(1-x, 1-y, 1-z)

(2-	-x, y, z (Fig	g. S2(δ)(iii) (lower))				(1-x, 1-y, z)	
O(2)	<i>O</i> (4)	2.976(2)	(M,\overline{M})	O(1) <i>H</i>	H(2),C(1)	2.53, 3.363(3)	(R)
	N(3)	3.012(3)	(M,\overline{M})	N(4)	H,N(1)	2.90, 3.243(3)	(R)
H	(6), <i>C</i> (8)	2.96, 3.129(3)	$(\boldsymbol{R},\overline{L})$		C(1)	3.308(3)	(<i>C</i>)
	C(9)	3.165(3)	(C, \overline{C})	N(1)	<i>O</i> (7)	3.243(3)	(<i>C</i>)
N(2)	<i>C</i> (8)	3.380(3)	(C, \overline{C})				

		(2-x, 2-y, z)		O(5) <i>H</i> , <i>C</i> (4)	3.08, 3.486(3)	(R)
O(4)	<i>O</i> (6)	3.155(3)	(C, \overline{C})	O(4) <i>H</i> , <i>C</i> (5)	2.40, 3.059(3)	(R)
O(5)	C(9)	3.468(3)	(C, \overline{C})	<i>H</i> , <i>C</i> (4)	2.68, 3.196(3)	(R)
H(7), <i>C</i> (10)	3.01, 3.140(3)	$(\boldsymbol{R}, \overline{L})$			

					(x, 1-y, z)	
	(1- <i>x</i> , 2- <i>y</i> , 1- <i>z</i>)		O(6)H(.	3), <i>C</i> (2)	2.38, 3.271(3)	(R)
O(5) <i>O</i> (6)	3.018(3)	(M,\overline{M})				
			Translation-re	elated appro	oaches	
	(1-x, 1-y, z)				(1+x, y, z)	
O(1) <i>O</i> (7)	3.326(2)	(C, \overline{C})	O(1) <i>H</i> (2	2), <i>C</i> (1)	3.08, 3.364(3)	(R)
			O(2)	N(1)	3.100(2)	(<i>C</i>)
Translation-related appr	roaches			C(1)	3.255(3)	(<i>C</i>)
(<i>x</i> –1, <i>y</i> , <i>z</i>) (Fig.	S3(δ)(iii) (upper))			C(2)	3.474(3)	(<i>C</i>)
O(1) <i>O</i> (<i>3</i>)	3.381(2)	(C,\overline{C})		C(4)	3.320(2)	(<i>C</i>)
O(7) <i>O</i> (1)	3.334(2)	(C, \overline{C})		<i>C</i> (5)	3.119(2)	(<i>C</i>)
<i>O</i> (<i>3</i>)	3.318(3)	(C, \overline{C})	O(3)	N(1)	3.259(3)	(<i>C</i>)
N(2)	3.292(3)	(C, \overline{C})		<i>C</i> (5)	3.267(2)	(<i>C</i>)
<i>C</i> (6)	3.340(2)	(C, \overline{C})	N(2)	N(1)	3.278(2)	(<i>C</i>)
<i>C</i> (7)	3.230(3)	(C, \overline{C})		<i>C</i> (5)	3.473(3)	(<i>C</i>)
N(4) <i>C</i> (7)	3.403(3)	(C,\overline{C})				
C(6)O(3)	3.039(3)	(C,\overline{C})	Cation	<i>cation'</i> app	proaches (inversion-	related)
C(11) <i>O</i> (3)	3.097(3)	(C, \overline{C})			$(1-x, \frac{-}{y}, \frac{-}{z})$	

C(4)...

C(4)

3.450(3)

NO₂C₆ interplanar dihedral angles: 36.58(8), 10.43(8), 19.92(9)°

(δ)(iv) (**bpy'H**₂)(**pic**)₂(·**H**₂**O**) (*C*2/*c*) (**UJOQUF**²⁵) (Fig. S1(δ)(iv))

4,4-BipyridylH²⁺₂ bis(picrate) : hydrate

(A) Hydrogen atom approaches/distances within the asymmetric unit

N(1)H(7)	0.85(4)	O(1)O(2,7)	2.646(3), 2.688(3)	
O(7)H(7),N(1)	2.28(3), 2.769(3) (R)	O(2)H(9),O(8)	2.2(3), 2.802(2)	(R)
O(1)H(7),N(1)	1.90(4), 2.708(3) (R)	O(1)H(9),O(8)	2.8(3), 3.034(3)	(R)

(B) Other approaches/overlaps (<3.6 Å)

O(3)...O(4)

Anion...anion' approaches Anion...cation' approaches Translation-related approaches Translation-related approaches (*x*, *y*−1, *z*) (x, 1+y, z)O(7)...*H*(1),*C*(1) 2.54, 3.408(3) (**R**) O(1)...O(6) 3.128(3) (C, \overline{C}) 3.253(4) (C, \overline{C}) O(2)...N(4) Screw-related approaches 3.309(3) (C, \overline{C}) C(6)3.080(4) (C, \overline{C}) C(11) $(2-x, y, \frac{1}{2}-z)$ (Fig. S2(δ)(iv) (upper)) $3.011(4) (c, \overline{c})$ C(6)...O(6) O(1)...*H*(4),*C*(5) 2.93, 3.179(4) (**R**) C(7)...O(6) 3.303(4) (*c*, \overline{c}) O(3)... C(3)3.238(3) (C) 3.405(4) (*c*, \overline{c}) N(2)...C(10) N(2)... 3.365(4) (**C**) C(3)3.403(4) (*c*, \overline{c}) C(11) H(3), C(4)2.93, 3.341(3) (**R**) C(4)... 3.530(4) (C) C(7)Screw-related approaches $(\frac{5}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z)$ $(2-x, y-1, \frac{1}{2}-z)$ (Fig. S2(δ)(iv) (upper)) 3.084(4) (*C*, \overline{C}) O(4)...O(5) O(2)...*H*(3),*C*(4) 2.50, 3.192(4) (**R**) $3.121(4) (C, \overline{C})$ N(3)H(4), C(5)2.67, 3.259(3) (**R**)

3.189(2) (C, \overline{C})

					$(\frac{5}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z)$	
	$({}^{5}/_{2}-x, {}^{1}/_{2}+y, {}^{3}/_{2}-z)$		O(5)	N(1)	3.353(4)	(<i>C</i>)
O(4)H(5), C(8)	2.54, 3.485(4)	(R, \overline{L})	H((1),C(1)	2.65, 2.951(3)	(R)
O(4)	3.361(4)	(C, \overline{C})				

Inversion-related approaches			Glide-related approaches		
$(\frac{5}{2}-x, \frac{1}{2}-y, 1-z)$ (Fi	g. S2(δ)(iv) (over))			(x, y, 1/2+z)	
O(5) <i>O</i> (7)	3.118(4)	(C,\overline{C})	O(3) <i>H</i> , <i>C</i> (2)	2.55(4), 3.483(4) (R)	
O(7) <i>N</i> (3)	3.092(4)	(C, \overline{C})	<i>C</i> (3)	3.156(4) (C)	
C(9)	3.385(4)	(C, \overline{C})			
<i>C</i> (10)	3.455(3)	(C, \overline{C})	Cationsolvent approac	hes	
N(4) <i>C</i> (10)	3.347(4)	(C, \overline{C})	Translation-related appr	oaches	
				(x, y-1, z)	
	$(^{5}/_{2}-x, ^{3}/_{2}-y, 1-z)$		O(8)H(4), C(5)	2.36, 3.306(4)	
O(6) O(6)	3.002(2)	(C, \overline{C})			
H(6), C(10)	2.64(3), 3.553(4)	$(\mathbf{R}, \overline{L})$		(x, y, z)	
			H(9),O(8) N(1)	2.97, 3.240(3)	

 NO_2/C_6 interplanar dihedral angles: 17.61(11), 14.15(12), 20.58(13)^{\circ}.

(δ)(v) (**tpyH**)(**pic**) (P**1**) (this work) (Fig. S1(δ)(v))

2,2':6',2''-Terpyridinium picrate

(A) Hydrogen atom approaches/distances within the asymmetric unit (Fig. 2(f))

O(41)H,N(031)	2.34(2), 3.1083(13) (R)	O(42)H,C(036)	2.29(2), 3.1666(14) (R)
N(031)-H(031)	0.89(2)	O(41)H,C(015)	2.52(2), 3.3374(11) (R)
O(1)O(21,61)	2.6348(11), 2.7014(12)	O(22)H,C(014)	2.38(2), 3.2974(14) (R)
N(021)H,N(031)	2.25(2), 2.6535(11)	H(3)H,C(014)	2.36(2), 3.087(13) (L)
H(025)H(033)	2.24(2)		

(B) Other approaches/overlaps (< 3.6 Å)
Anion...*anion'* approaches
Inversion-related approaches

Anion...*cation'* approaches Inversion-related approaches

	$(x, 1-y, 1-z)$ (Fig. S2(δ)(v))		(1-x, 1-y, 1-z)
C(1) <i>C</i> (3)	$3.3341(14) (C, \overline{C})$	C(1)N(021)	3.4323(13) (C)
C(2) <i>C</i> (2)	3.4604(13) (C, C)	C(2)N(021)	3.4996(12) (<i>C</i>)
<i>C</i> (<i>3</i>)	$3.3879(13)$ (C, \overline{C})	C(4) <i>C</i> (014)	3.5414(16) (C)
<i>C</i> (4)	$3.5106(14)$ (C, \overline{C})	<i>C</i> (015)	3.5886(14) (C)
C(4) <i>N</i> (2)	$3.3376(12)$ (C, \overline{C})	C(5)N(011)	3.4543(13) (C)
<i>O</i> (21)	$3.3760(13)$ (<i>c</i> , \overline{c})	<i>C</i> (012)	3.4247(15) (C)
C(5)N(2)	$3.2798(13)$ (C, \overline{C})	<i>C</i> (013)	3.5406(17) (<i>C</i>)
<i>O</i> (22)	$3.3121(14)$ (C, \overline{C})	<i>C</i> (016)	3.5253(13) (C)
C(6)O(22)	3.4166(13) (C, <u>c</u>)	C(6)N(011)	3.3801(14) (<i>C</i>)

O(21)N(4)	3.3307(13)	(C, \overline{C})	<i>C</i> (016)	3.4060(14)	(<i>C</i>)
<i>O</i> (42)	3.2826(14)	(C, \overline{C})	N(6) N(011)	3.2362(14)	(<i>C</i>)
			H,C(014)	2.98(2), 3.400(2)	(R)
	(x, 2-y, 1-z)		N(2) N(031)	3.0887(11)	(C)
O(42) <i>O</i> (62)	3.0072(13)	(C, \overline{C})	<i>C</i> (036)	3.3784(12)	(<i>C</i>)
			O(21) N(031)	3.0833(12)	(<i>C</i>)
Cationcation approaches	3		<i>C</i> (032)	3.0924(13)	(<i>C</i>)
Inversion-related approach	nes		<i>C</i> (<i>033</i>)	3.3883(13)	(<i>C</i>)
	(1– <i>x</i> , 1– <i>y</i> , 2– <i>z</i>)		<i>C</i> (036)	3.3700(12)	(<i>C</i>)
N(021) <i>C</i> (032)	3.3964(12)		<i>C</i> (036)	3.0736(12)	(C)
C(023) <i>C</i> (036)	3.4046(13)		O(22) N(031)	3.2091(12)	(<i>C</i>)
C(024) <i>C</i> (036)	3.4546(15)		H,C(036)	2.99(1), 3.0736(12)	(R)
C(025)N(031)	3.4676(14)		O(61) N(011)	3.3634(14	(<i>C</i>)
C(026)N(031)	3.4673(13)		C(023)	3.2911(13)	(<i>C</i>)
C(032)	3.5996(14)				
N(031) <i>C</i> (025)	3.4676(14)			(1-x, y, 1-z)	
<i>C</i> (026)	3.4673(13)		O(21) <i>H</i> , <i>C</i> (012)	2.68(2), 3.4933(13)	(R)
	(2-x, 1-y, 2-z)			(1– <i>x</i> , 1– <i>y</i> , 2– <i>z</i>)	
C(024) <i>C</i> (033)	3.5318(15)		O(42) <i>H</i> , <i>C</i> (024)	2.79(2), 3.3312(13)	(R)
Translation related approa	chas			_	
Translation-related approa	enes			(<i>x</i> , 2– <i>y</i> ,1– <i>z</i>)	
	(x, y-1, z)		O(61) <i>H</i> , <i>C</i> (035)	2.61(1), 3.3798(12)	(R)
C(012) <i>H</i> , <i>C</i> (035)	3.00(2), 3.275(2)		O(62) <i>H</i> , <i>C</i> (036)	2.63(1), 3.3344(11)	(R)
C(013) <i>H</i> , <i>C</i> (035)	2.98(2), 3.487(2)				
			(x, 1-y, 1-z))	
Cation Hcation' (H) appr	roaches (inversion-re	lated)	O(62)H,C(014)	2.93(2), 3.318(2)	(R)
H(023)H(023) (2-x, y),	z) 2.22(2)		N(6) <i>H</i> , <i>C</i> (014)	2.98(2), 3.400(2)	(R)
H(024) <i>H</i> , <i>C</i> (012) (2– <i>x</i> , <i>y</i>)	, 2– <i>z</i>) 2.34(2), 3.01	11(15)			
H(034) <i>H</i> (035) (2– <i>x</i> , ^{<i>y</i>} ,	2– <i>z</i>) 2.49(2)		Translation-related a	pproaches	
			(<i>x</i> –1, 1+ <i>y</i> , <i>z</i>)		
			O(62) <i>H</i> , <i>C</i> (013)	2.69(2), 3.529(2)	(R)
			(<i>x</i> -1, <i>v</i> , <i>z</i> -1)		

(x-1, y, z-1)O(1)... H,C(033) 2.27(2), 3.1885(13) (**R**) H,C(025) 2.30(2), 3.2477(15) (**R**) S45

O(21) <i>H</i> , <i>C</i> (024)	2.69(2), 3.2924(16)	(R)
H,C(025)	2.68(2), 3.2766(13)	(R)
O(61) <i>H</i> , <i>C</i> (033)	2.67(2), 3.2291(14)	(R)
H,C(034)	2.44(2), 3.1099(14)	(R)

NO₂/C₆ interplanar dihedral angles: 0.80(11), 7.88(5), 150.85(5);

interpyridyl dihedral angles within the cation: 1/2 23.54(4); 1/3 28.86(6); 2/3 9.41(4)°.

(ϵ)(i) (**phenH**)(**pic**) (**P2**₁/**c**) (this work) (Fig. S1(ϵ)(i))

1,10-Phenanthrolinium picrate

(A) Hydrogen atom approaches/distances within the asymmetric unit (Fig. 2(g))						
O(1)N,H(011)	1.92(2), 2.706(2) (R)	O(1)H,C(012)	2.65(2), 3.083(3) (R)			
N(021)N,H(011)	2.39(3), 2.767(3)	O(61)H,C(012)	2.33(2), 3.324(3) (<i>R</i>)			
N(011)-H(011)	0.93(2)	O(1)O(21,61)	2.898(2), 2.748(2)			

(B) Approaches/overlaps (< 3.6 Å) within the screw-related stack of alternating anions and cations (Figs. S2(ε)(i)).
(i) Anion...*cation* approaches (see Fig. S2(ε)(i) (upper and lower))

	Cation' at (1	$-x, \frac{1}{2}+y, \frac{1}{2}-z$ (upper))	Ca	tion' at (1	$-x, y = \frac{1}{2}, \frac{1}{2} = z$ (lower)	
C(2)	C(012)	3.566(3)	(<i>C</i>)	C(4)	C(015)	3.473(3)	(C)
C(3)	C(012)	3.243(3)	(<i>C</i>)	C(5)	C(026)	3.532(3)	(C)
	C(013)	3.549(3)	(<i>C</i>)	C(6)	C(026)	3.495(3)	(C)
C(4)	N(011)	3.407(3)	(<i>C</i>)		C(015)	3.5886(14)	(C)
	C(016)	3.464(3)	(<i>C</i>)	O(21) <i>H</i>	I,C(012)	2.81(2), 3.162(3)	(R)
O(22) <i>H</i>	H,C(012)	2.85(2), 3.495(3)	(R)	N(4)	C(017)	3.426(3)	(C)
	O(61)	2.935(2)	(<i>C</i>)	N(6)	N(021)	3.372(2)	(C)
C(5)	C(016)	3.581(3)	(<i>C</i>)		C(022)	3.478(2)	(C)
N(4)	C(015)	3.381(3)	(<i>C</i>)	O(61)	N(021)	3.349(2)	(C)
O(41)	C(014)	3.442(3)	(<i>C</i>)		C(022)	3.366(3)	(C)
O(42)	C(015)	3.414(3)	(<i>C</i>)	O(62)	C(022)	3.393(3)	(C)
	C(017)	3.416(3)	(<i>C</i>)				

		(1-x, y-1/2, z-1/2)
(ii) Anionanion' approaches	O(21) <i>N</i> (6)	3.146(2) (C, C)
$(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$) O(61)	3.011(2) (C, C)

C(1)	O(1)	3.416(3)	(C, C)
O(22)	O(61)	2.935(2)	(C,\overline{C})

(C) Other approaches

Anion...anion' approaches (inversion-related)

	(1-x, 1-y, z)	
O(22) <i>H</i> , <i>C</i> (3)	2.58(2), 3.426(3)	(R, \overline{L})
N(2)	3.261(3)	(C,\overline{C})
<i>O</i> (22)	2.961(2)	(C, \overline{C})

Anion...cation' approaches (inversion-related)

		(1-x, 1-y, z)	
O(41) <i>I</i>	H,C(023)	2.83(2), 3.401(3)	(R)
1	H,C(022)	2.63(3), 3.272(3)	(R)
		(1-x, 1-y, 1-z)	
O(61)l	H,C(013)	2.46(2), 3.263(3)	(R)
1	H,C(014)	2.96(2), 3.442(3)	(R)
		(1-x, y, z)	
C(5)	C(026)	3.532(3)	(<i>C</i>)
C(6)	C(026)	3.495(3)	(<i>C</i>)

Anion...cation' approaches (translation-related)

(m. 1	•••	-)
(<i>x</i> -1,	у,	2)

H(5) <i>H</i> (024)	2.41(3)	(M)
O(42) <i>H</i> , <i>C</i> (023)	2.50(2), 3.385(3)	(R)
O(62) <i>H</i> , <i>C</i> (024)	2.75(2), 3.577(3)	(R)

Anion...cation' approaches (glide-related)

 $(x-1, \frac{1}{2}-y, z-\frac{1}{2})$

O(42)...H,C(017) 2.52(2), 3.403(3) (**R**)

NO₂/C₆ interplanar dihedral angles: 51.88(8), 7.38(8), 12.28(8)°.

(ϵ)(ii) (**NH**₄)(**pic**)(**·phen**) (**P2**₁/*c*) (**AMPCPL**^{26a}) (Fig. S1(ϵ)(ii))

Ammonium picrate : phenanthroline

(A) The ammonium environment

O(1)H(2),N(1)	2.23, 2.834(3)	(R)	N(5)H(1),N(1)	1.89, 2.840(3)
$O(1)H(2)^*, N(1)^*$	2.33, 2.991(3)	(R)	N(6)H(1),N(1)	2.36, 3.044(4)
$O(7)H(2)^*, N(1)^*$	2.35, 3.080(4)	(R)	N(1)-H(1-4)	1.03, 0.87, 0.91, 0.87
O(1)H(3),N(1)	1.99, 2.834(2)	(R)		
O(2)H(3),N(1)	2.20, 2.851(4)	(R)	Also:	
O(6)H(4),N(1) [†]	2.19, 3.013(3)	(R)	O(1)O(2,7)	2.675(3), 2.644(3)
* $(1-x, y, z), (x, y, -1/2, z)$	1/2)		O(7)H(7),C(7)	2.47, 3.354(3)

(B) Other approaches/overlaps (< 3.6 Å)

Inversion-related approaches

Anionanion' approaches		Anionphen' approach	ies
(1-x, y - 1)	, \overline{z}) (Fig. S2(ε)(ii))		(1-x, y, 1-z)
C(1) <i>O</i> (2)	$3.204(4)$ (<i>C</i> , \overline{c})	O(3) <i>H</i> , <i>C</i> (7)	2.85, 3.333(4) (R)
O(6) <i>O</i> (2)	3.299(3) (C, <u>c</u>)	N(3) <i>C</i> (14)	3.425(4) (<i>C</i>)
O(1) <i>N</i> (2)	3.386(3) (C, C)	O(4) <i>C</i> (15)	3.211(3) (<i>C</i>)
<i>O</i> (2)	3.352(3) (C, C)	<i>C</i> (<i>16</i>)	3.479(3) (<i>C</i>)
O(2) <i>C</i> (6)	3.299(3) (C, C)	O(5) <i>C</i> (14)	3.159(4) (C)
		N(3) <i>N</i> (6)	3.114(3) (C)

phenphen' approaches		O(4) <i>N</i> (6)	3.170(3) (C)	
	(2-x, y, z)	O(5) <i>N</i> (6)	3.344(3) (C)	
C(8) <i>C</i> (11)	3.576(5)			
C(9) <i>C</i> (10)	3.481(4)			

(1-x, y, z) (Fig. S2(ε)(ii))

Screw-related approaches		C(2) <i>C</i> (16)	3.442(3) (C)
	$(1-x, \frac{1}{2}+y, \frac{z-1}{2})$	C(3) <i>C</i> (11)	3.597(4) (C)
O(7) <i>O</i> (6)	3.274(4) (C , C)	C(4) <i>C</i> (18)	3.387(3) (C)
O(7) <i>H</i> (6), <i>C</i> (5)	2.83, 3.605(4)(R, L)	C(6)N(6)	3.397(3) (C)
		O(3) <i>C</i> (9)	3.457(4) (C)
Anionphen' approaches (cont.)		O(4) <i>C</i> (11)	3.488(4) (C)
Glide-related approaches		<i>C</i> (15)	3.211(3) (C)
	$(x-1, y^{-1/2}, z^{-1/2})$	C(16)	3.479(3) (C)

O(4) <i>H</i> , <i>C</i> (12)	2.73, 3.443(4)	(R)
-------------------------------	----------------	--------------

Translation-related approaches			
(<i>x</i> –1, <i>y</i> –1, <i>z</i>)			
2.37, 3.342(4)	(R)		
2.52	(<i>M</i>)		
	ches (<i>x</i> -1, <i>y</i> -1, <i>z</i>) 2.37, 3.342(4) 2.52		

	(1-x, y-1, z)	
H(5),C(3) <i>N</i> (5)	2.95, 3.380(3)	(L)
O(3) <i>H</i> , <i>C</i> (7)	2.85, 3.333(4)	(R)

Screw-related approaches

(1-x, y-1/2, 1/2-z)

- O(3)...*H*,*C*(13) 2.65, 3.458(3) (*R*)
- $(1-x, y-1/2, z^{-1/2})$ O(5)...H,C(8) 2.35, 3.369(3) (**R**)

 NO_2/C_6 interplanar dihedral angles: 14.8(9), 5.4(3), 5.62(12)°.

(ϵ)(iii) '[(**phenH**)(**bpy'H**)(**phen**)](**pic**)₂' (x 0.5) (P 1) * (**INOSUZ**²⁷) (Fig. S1(ϵ)(iii))

1,10-Phenanthrolinium 1,10-phenanthroline 4,4'-bipyridinium bis(picrate)

(A) Hydrogen atom approaches/distances within the asymmetric unit

N(1)H,N(2)	1.87 , 2.716(4)	H(2)-N(2,3)	0.86, 2.40
N(3)N(1,2)	3.063(2), 2.725(4)	O(1)O(3,7)	2.943(4), 2.703(4)

(B) Other approaches/overlaps (< 3.6 Å)

Anion...anion' approaches

Inversion-related approaches

Anion...*bpy'H*⁺*cation'* approaches Inversion-related approaches

	(x, 2-y, 1-z)		(1-x, 1-y,	$(1-z)$ (Fig. S2(ε)(iii))
O(2)O(2)	3.251(5)	(C, \overline{C})	O(1) <i>C</i> (5)	3.341(4) (C)
N(4)	3.221(5)	(C,\overline{C})	O(6) <i>C</i> (1)	3.360(5) (C)
H,C(20)	2.66, 3.399(4)	$(\mathbf{R}, \overline{L})$	C(18) <i>C</i> (4)	3.394(5) (C)
			<i>C</i> (5)	3.292(5) (C)
(1-x, 2-y, 1	- <i>z</i>) (Fig. S2(ε)(iii))		C(19) <i>C</i> (4)	3.403(5) (<i>C</i>)
O(4) <i>C</i> (18)	3.432(5)	(C, \overline{C})	C(21) <i>C</i> (3)	3.480(5) (C)
<i>C</i> (19)	3.496(5)	(C,\overline{C})	C(22) <i>C</i> (2)	3.513(5) (C)
O(5) <i>O</i> (2)	2.919(4)	(C, \overline{C})	<i>C</i> (<i>3</i>)	3.480(5) (C)
N(5) <i>O</i> (2)	3.078(5)	(C, \overline{C})	C(23) <i>C</i> (5)	3.567(5) (C)
C(20) <i>C</i> (20)	3.523(5)	(C, \overline{C})		
<i>C</i> (21)	3.453(5)	(C, \overline{C})		(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)
			O(6) <i>H</i> , <i>C</i> (4)	2.73, 3.267(4) (R)

Translation-related appr	roaches	<i>H</i> , <i>C</i> (5)	2.57, 3.194(4) (R)
	(x-1, y, z)	H(22) <i>H</i> (4)	2.82 (M)
O(3) <i>O</i> (6)	$3.040(5)$ (<i>C</i> , \overline{C})		
N(6)	3.097(6) (C, C)	Translation-related ap	proaches (1+x,y,z)
O(3) <i>H</i> , <i>C</i> (22)	3.01, 3.317(5) (R , <i>L</i>)	O(5) <i>H</i> , <i>C</i> (1)	2.67, 3.279(4) (R)
<i>C</i> (23)	3.413(5) (C, C)	H(2a), C(2)	2.74, 3.308(4) (R)

phenH⁺cation...*phenH*⁺cation' approaches Inversion-related approaches

Anion...phenH⁺cation' approaches

2.89

2.90, 3.734(3) (**R**)

Translation-related approaches

H(22)...H(2a)

	$(\bar{x}, 1-y, 2-z)$		(x, 1+y, z-1)
C(12) <i>C</i> (17)	3.567(5)	O(1) <i>H</i> , <i>C</i> (8)	2.61, 3.296(4) (R)
		O(7) <i>H</i> , <i>C</i> (7)	2.62, 3.360(4) (R)
	(1-x, 1-y, 1-z)		
C(17) <i>C</i> (17)	3.596(5)		(1+ <i>x</i> , <i>y</i> , <i>z</i> -1)
		O(6) <i>H</i> , <i>C</i> (11)	2.42, 3.327(5) (R)

Inversion-related approaches

O(7)...*H*,*C*(13)

	(x, 2–y, 1–z)	
O(1) <i>H</i> , <i>C</i> (14)	2.82, 3.396(4)	(R)
O(1) <i>H</i> , <i>C</i> (8)	2.61, 3.296(4)	(R)

NO₂/C₆ interplanar dihedral angles: 66.9(2), 11.8(2), 18.73(14)°.

*'[(phenH)(4,4'-bpyH)(phen)](pic)₂', recorded as such in ref.²⁷, is presented therein in triclinic space group P_1 with one such 'centrosymmetric supramolecular unit' comprising the cell contents. Although 'hydrogen atoms of the ligands were generated geometrically', the coordinate file we have obtained has none. Consideration of the non-hydrogen atom geometries obtained from the set of nicely precise coordinates supplied shows angles at the nitrogen atoms to be 119.2(3)° at the bpy nitrogen atom (N(1)), and 120.4(3), 116.4(3)° at those of the phen (N(2,3)), suggesting that the latter (N(3)) has no protonic association. For the purpose of the present exercise, we have located the hydrogen atom required to satisfy the stoichiometry on N(2), positioned so as to bridge to the bpy as described in ref.²⁷, all others being reasonably readily calculable.

(**M**)

(M)

(ϵ)(iv) (**dmpH**)(**pic**) (P_1) (this work) (Fig. S1(ϵ)(iv))

2,9-Dimethyl-1,10-phenanthrolinium picrate

(A) Hydrogen atom approaches/distances within the asymmetric unit (Fig. 2(h))

O(1)H,N(021)	1.81(2), 2.718(2) (R)	O(1)H(02A),C(028)	2.32(3), 3.058(3) (R)
O(21)H,N(021)	2.58(3), 3.034(3) (R)	C(2)H(01A),C(018)	2.88(3), 3.398(3) (P _R)
N(011)H,N(021)	2.44(2), 2.760(2)	Also:	
N(021)-H(021)	0.94(2)	O(1)O(21,61)	2.701(2), 2.659(2)

(B) Other approaches/ov	erlaps (< 3.6 Å)		
Anionanion' approa	ches (inversion-related)	Anioncation' appro	aches
(1-x, 2-	y, 1–z) (Fig. S2(ϵ)(iv))	Inversion-related app	roaches
C(1) <i>C</i> (<i>3</i>)	3.549(3) (C, C)		(1-x, 1-y, 1-z)
C(2) <i>C</i> (5)	3.539(3) (C, C)	O(22) <i>H</i> , <i>C</i> (013)	2.77(2), 3.339(3) (R)
<i>C</i> (6)	3.500(3) (C, C)	O(41) <i>H</i> , <i>C</i> (014)	2.70(3), 3.113(2) (<i>R</i>)
C(3) <i>C</i> (6)	3.533(3) (C, C)		
C(5) <i>N</i> (2)	3.412(3) (C, C)		$(\bar{x}, 1-y, \bar{z})$
H(5),C(5)O(21)	2.93(3), 3.168(3) (L, \overline{R})	O(21) <i>H</i> , <i>C</i> (024)	2.53(2), 3.361(2) (R)
		H,C(027)	2.44(2), 3.270(2) (R)

	(2– <i>x</i> , 2– <i>y</i> , 1– <i>z</i>)				
C(4) <i>O</i> (62)	3.109(3)	(C, \overline{C})		(2-x, 2-y, 1-z)	
C(5) <i>C</i> (5)	3.469(3)	(C,\overline{C})	O(62) <i>C</i> (018)	3.245(2)	(<i>C</i>)
O(62)	3.474(3)	(C, \overline{C})			
N(4) <i>O</i> (62)	2.929(3)	(C, \overline{C})		(1-x, 2-y, z)	
O(41) <i>O</i> (62)	3.345(2)	(C,\overline{C})	O(61) <i>C</i> (022)	3.445(3)	(<i>C</i>)
O(42)N(6)	3.189(3)	(C, \overline{C})	<i>C</i> (023)	3.429(3)	(<i>C</i>)
O(42) <i>O</i> (62)	3.109(2)	(C, \overline{C})	H(02C),C(028)	2.57(4), 3.318(3)	(R)
			O(41) <i>H</i> (02B), <i>C</i> (028)	2.75(3), 3.357(3)	(R)

O(41)...*H*,*C*(023)

O(42)...*H*,*C*(017)

O(61)...*H*,*C*(013)

H,*C*(027)

H,*C*(014)

Translation-related approaches

Cation...cation' approaches

Inversion-related approaches

(1-x, 1-y, z)N(011)...*C*(027) 3.447(3) C(012)...C(024)3.591(3) C(025) 3.376(3) C(027) 3.468(3) C(013)...C(023) 3.555(3) C(024) 3.374(3) C(025)3.484(3) C(014)...N(021) 3.471(3) C(026)3.572(8) C(015)...C(026) 3.506(3) C(016)...C(016) 3.504(2) N(021)...*C*(014) 3.471(3)

	(x, 1-y, z)
C(017) <i>C</i> (023)	3.485(3)
C(022) <i>C</i> (027)	3.438(3)
C(023) <i>C</i> (027)	3.487(3)
C(024) <i>C</i> (025)	3.485(3)
<i>C</i> (026)	3.445(3)
C(025) <i>C</i> (025)	3.445(3)

NO₂/C₆ interplanar dihedral angles: 23.03(9), 4.0(2), 21.39(10)°.

_

(*x*, *y*–1, *z*)

2.62(3), 3.455(3) (**R**)

(1+x, 1+y, 1+z)

2.59(2), 3.198(2) (**R**)

2.59(2), 3.207(2) (**R**)

(x, 1+y, z)

2.62(2), 3.170(3) (**R**)

2.42(2), 3.086(3) (**R**)

(ζ)(i) (quinH)(pic) (P2₁/c) (UBEGAL⁸) (Fig. S1(ζ)(i))

Quinolinium picrate

(A)	Hydrogen atom	approaches/distances	within the fundamental	ion-pair (cation at	$(1-x, \frac{1}{2}+y, \frac{1}{2}-z))^{*}$
-----	---------------	----------------------	------------------------	---------------------	--

O(6)H(8),N(1)	1.82(2), 2.685(2)	(R)	N(1)-H(8)	0.88(2)
O(2)H(8),N(1)	2.52, 3.075(2)	(R)		
H(6),C(8)	2.48, 3.081(2)	(R)		
O(3)H(2),C(3)	2.39, 3.278(2)	(R)		
O(6)H(2),C(3)	2.45, 3.147(2)	(R)	Also:	
(O(6)C(2)	3.338(2)	(<i>C</i>))	O(6)O(2,3)	2.655(2), 2.693(2)

(B) Other approaches/overlaps (< 3.6 Å)

Anion...*anion'* approaches (Fig. $S2(\zeta)(i)$) Inversion-related approaches

Anion...cation' approaches

Inversion-related approaches

	(2-x, 2-y, 1-z)	
O(1)N(2)	$3.339(2)$ (<i>c</i> , \overline{c})	O(3) <i>H</i> , <i>C</i>
<i>C</i> (14)	$3.456(2)$ (<i>C</i> , \overline{C})	H(6)
O(7) <i>C</i> (10)	$3.443(2) (C, \overline{C})$	O(4)H(6)
<i>C</i> (14)	$3.391(2) (C, \overline{C})$	O(1)H(1)
N(4) <i>C</i> (14)	$3.213(2) (C, \overline{C})$	
C(12) <i>C</i> (14)	$3.562(2)$ (<i>C</i> , \overline{C})	
		O(7)H(3)
	(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)	H(4)
O(1)O(4)	$3.145(2) (C, \overline{C})$	
O(4) <i>C</i> (<i>12</i>)	$3.215(2) (C, \overline{C})$	

.

	(1-x, 1-y, 1-z)	
O(3) <i>H</i> , <i>C</i> (1)	2.55, 3.237(3)	(R)
H(6), C(8)	3.06, 3.495(3)	(R)
O(4) <i>H</i> (6), <i>C</i> (8)	2.76, 3.440(3)	(R)
O(1) <i>H</i> (1), <i>C</i> (1)	2.61, 3.090(2)	(R)
	(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)	

D(7)H(3), C(5)	2.66, 3.477(2)	(R)
H(4), C(6)	2.57, 3.400(2)	(R)

			Translation-related app	roaches
N(4)	2.936(2)	(C,\overline{C})		(1+x, 1+y, z)
<i>O</i> (7)	3.262(2)	(C, \overline{C})	O(1) <i>H</i> (6), <i>C</i> (8)	2.60, 3.317(3) (R)
C(10) <i>O</i> (7)	3.360(2)	(C, \overline{C})	O(2) <i>H</i> (7), <i>C</i> (9)	3.09, 3.458(3) (R)
C(12) <i>O</i> (4)	3.215(2)	(C, \overline{C})		
C(14) <i>C</i> (14)	3.354(2)	(C, \overline{C})	Glide-related approact	hes
N(2) <i>O</i> (7)	3.325(2)	(C, \overline{C})		$(x, \frac{1}{2}-y, \frac{1}{2}+z)$
			O(4)H(5), C(7)	2.82, 3.391(3) (R)
Glide-related approach	es		H(7), C(9)	2.86, 3.410(3) (R)
	$(x, \frac{3}{2}-y, \frac{z-1}{2})$			
O(2) <i>O</i> (4)	3.293(2)	(C,\overline{C})	Screw-related approach	nes
				$(2-x, \frac{1}{2}+y, \frac{1}{2}-z)$
Screw-related approach	nes		H(10),C(15)H(7)	2.43, 3.058(2) (M)
	$(2-x, \frac{1}{2}+y, \frac{1}{2}-z)$			
O(5) <i>N</i> (3)	3.343(3)	(C, \overline{C})	Cationcation' approx	aches (screw-related)
<i>C</i> (<i>13</i>)	3.395(3)	(C, \overline{C})		$(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$
			N(1) <i>C</i> (7)	3.482(3)
	(2-x, y-1/2, 1/2-z)		C(2) <i>C</i> (2)	3.427(2)
O(2) <i>H</i> (10), <i>C</i> (15)	2.84, 3.559(3)	$(\boldsymbol{R}, \overline{L})$	<i>C</i> (<i>3</i>)	3.522(3)
			C(4) <i>C</i> (<i>3</i>)	3.582(3)
			C(7) <i>C</i> (8)	3.507(3)
				$(1-x, y-\frac{1}{2}, \frac{1}{2}-z)$
			C(2) <i>C</i> (<i>3</i>)	3.560(3)
			C(3) <i>C</i> (4)	3.582(3)
			C(7) <i>C</i> (8)	3.336(3)

NO₂/C₆ interplanar dihedral angles: 32.98(9), 9.0(2), 6.66(8)°.

*The two components of the asymmetric unit as presented in the CCDC CIF do not constitute the ion-pair without appropriate transformation, the cation being displaced to $(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$ relative to that of the CIF file.

(ζ)(ii) (iqH)(pic) (P2₁/a) (JUSRUK²⁸) (Fig. S1(ζ)(ii))

iso-Quinolinium picrate

(1)	Undragon stom or	meashas/distances	within the fur	adamantal ion	main (all	comparated by	vantion at (1 1 .	*.
(A)	nyurogen atom ap	oproaches/distances	within the ful	idamental lon-	pair (an	generated by	y cation at (1-x, 1-y	, z))

O(1)H,N(4)	1.76, 2.590(4) (R)	N(4)-H(4)	0.86
O(7)H,N(4)	2.52, 3.086(5) (R)	O(1)O(2,7)	2.704(4), 2.635(5)
H,C(8)	2.47, 3.077(6) (R)		

(B)	Other approaches/overlaps	(< 3.6 Å	Å)
-----	---------------------------	----------	----

Anion...anion' approaches Anion...cation' approaches Inversion-related approaches Translation-related approaches (1-x, y, 1-z)(x, y-1, z) (Fig. S2(ζ)(ii)) 3.230(5) (*c*, \overline{c}) O(3)...*O*(4) N(2)...*C*(*12*) 3.403(6) (**C**) O(4)...*H*,*C*(*3*) 2.69, 3.365(4) $(\mathbf{R}, \overline{L})$ C(2)...*C*(9) 3.456(6) (**C**) C(3)...C(10) 3.543(5) (**C**) Glide-related approaches C(4)...*C*(10) 3.560(5) (**C**) C(11)3.496(6) (**C**) $(\frac{1}{2}+x, \frac{1}{2}-y, z)$ C(5)...C(15) 3.566(5) (**C**) $3.209(6) (C, \overline{C})$ O(2)...O(6) O(2)...*C*(8) 3.174(7) (**C**) $3.449(4) (c, \overline{c})$ C(5)O(5)...*C*(*12*) 3.279(5) (C) C(13) 3.470(6) (**C**)

Screw-related approaches

	$(\frac{1}{2}-x, y-\frac{1}{2}, z)$		Inversion-related approaches
O(6) <i>O</i> (7)	3.220(5)	(C,\overline{C})	

	(1-x, 1-y, 1-	-z)
O(4) <i>H</i> , <i>C</i> (9)	2.65, 3.40	0(5) (R)
H(3) <i>H</i> (11)	2.55	(M)

Anion...cation' approaches (cont.)

Glide-related approaches

		$(x-\frac{1}{2}, \frac{1}{2}-y, z)$		Screw-related approaches	
O(6)	.N(4)	3.392(6)	(<i>C</i>)		(¹ / ₂ - <i>x</i> , <i>y</i> - ¹ / ₂ , 1- <i>z</i>)
	<i>C</i> (8)	2.87, 3.161(7)	(<i>C</i>)	O(5) <i>H</i> , <i>C</i> (12)	2.52, 3.342(5) (R)
O(5)	.H,C(9)	2.80, 3.551(6)	(R)		
		(¹ / ₂ + <i>x</i> , ¹ / ₂ - <i>y</i> , 1+ <i>z</i>)			
O(2)	.H,C(13)	2.72, 3.412(6)	(R)		

NO₂/C₆ interplanar dihedral angles: 34.2(2), 10.6(2), 1.1(4)°.

*The two components of the asymmetric unit as presented in the CCDC CIF do not constitute the ion-pair without appropriate transformation, the cation being displaced to (1-x, 1-y, z) relative to that of the CIF file.

(ζ)(iii) (2mqH)(pic) (P1) (VATTER²⁹) (Fig. S1(ζ)(iii))

2-Methylquinolinium picrate

(A)	Hydrogen atom approaches/	distances within the fundar	mental ion-pair (all genera	ted by cation at $(x, 1+y, z)^*$
	O(1)H,N(1)	1.93, 2.749(3) (R)	O(1)H(2),C(1)	2.68, 3.443(4) (R)
	O(2)H,N(1)	2.29, 2.857(3) (R)	O(1)O(2,7)	2.680(4) , 2.948(4)
	N(1)-H(1)	0.86		

(B) Other approaches/over	laps (< 3.6 Å)					
Anionanion' approa	ches		Anionc	ation' approa	aches	
Translation-related ap	proaches		Translatio	on-related ap	proaches	
	(1+x, y, z)				(<i>x</i> -1, <i>y</i> , 1+ <i>z</i>)	
O(2)N(4)	3.218(3)	(C, \overline{C})	O(4)H(.	5), <i>C</i> (3)	2.64, 3.345(4)	(R)
<i>O</i> (6)	3.173(4)	(C,\overline{C})	H(6),C(4)	2.92, 3.482(4)	(R)
<i>O</i> (7)	3.229(4)	(C,\overline{C})				
O(3) <i>H</i> (12), <i>C</i> (15)	2.46, 3.339(4)	$(\mathbf{R}, \overline{L})$			(<i>x</i> –1, 1+ <i>y</i> , <i>z</i>)	
			O(6)H(.	3),C(1)	2.72, 3.327(5)	(R)
Inversion-related app	roaches			C(2)	3.439(5)	(C)
	(1-x, 2-y, 2-z)			N(1)	3.398(4)	(<i>C</i>)
O(2) <i>N</i> (2)	3.372(5)	(C, \overline{C})		<i>C</i> (6)	3.449(4)	(C)
<i>O</i> (<i>3</i>)	3.167(4)	(C, \overline{C})	O(7)	N(1)	3.398(4)	(<i>C</i>)
O(3) <i>N</i> (2)	3.264(5)	(C, \overline{C})				
					(x, 1-y, z)	
			O(7)	C(6)	3.449(4)	(C)

	(x, 1-y, 2-z)				
O(4) <i>O</i> (5)	3.398(4) (C	$,\overline{C})$			
O(5) <i>N</i> (3)	3.160(5) (C	$,\overline{C})$	Inversion-related ap	pproaches	
<i>O</i> (5)	3.357(4) (C	, C)		(1– <i>x</i> , 1– <i>y</i> , 2– <i>z</i>)	
			O(3) <i>H</i> , <i>C</i> (7)	2.78, 3.463(4)	(R)
(x, 2-y)	2– <i>z</i>) (Fig. S2(ζ)(iii))		O(4) <i>C</i> (8)	3.292(5)	(R)
O(7) <i>O</i> (4)	3.188(5) (C	$,\overline{C}$)	C(9)	3.131(5)	(R)
N(3)	3.369(6) (C	$,\overline{C})$	<i>C</i> (10)	3.408(4)	(R)
<i>C</i> (13)	3.459(5) (C	$,\overline{C})$			
<i>C</i> (14)	3.487(6) (C	$,\overline{C})$		(x, 1-y, 2-z)	
			O(5) <i>H</i> , <i>C</i> (7)	2.53, 3.168(4)	(R)
Cationcation' approac	ches (inversion-related)		<i>C</i> (8)	3.427(5)	(<i>C</i>)
	(1– <i>x</i> , 2– <i>y</i> , 2– <i>z</i>)				
N(2) <i>N</i> (2)	3.240(5)			(1-x, 2-y, 1-z)	
			O(7)H(6), C(4)	2.39, 3.302(4)	(R)
	(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)		O(1) C(4)	3.496(4)	(<i>C</i>)
C(4) <i>C</i> (4)	3.447(5)				
	(1-x, y, 1-z)				
C(1) <i>C</i> (1)	3.556(5)				

NO₂/C₆ interplanar dihedral angles: 10.3(2), 0.9(1), 64.6(2)°.

C(3)...*C*(7)

(1-x, 1-y, 1-z)

3.553(5)

*The two components of the asymmetric unit as presented in the CCDC CIF do not constitute the ion-pair without appropriate transformation, the cation being displaced to (x, 1+y, z) relative to that of the CIF file.

(ζ)(iv) (ohqH)(pic) (P2₁/c) (this work) (Fig. S1(ζ)(iv))

8-Hydroxyquinolinium picrate

(A) Hydrogen atom approaches/distances within the asymmetric unit (Fig. 2(i))

O(21)	H,C(07)	2.49(2), 3.413(2) (R)	O(61)H,O(011)	2.44(2), 2.926(2)	(R)
O(1)	H,C(07)	2.41(2), 3.081(2)	O(1) H,O(011)	1.75(3), 2.594(2)	(R)
O(011)	.H,N(01)	2.30(2), 2.649(2)	N(01)-H(01), O(011)-H(011) 0.86(2), 0.86(3)	
O(1)	O(21,61)	2.666(2), 2.638(2)			

(B) Other approaches/overlaps (< 3.6 Å)

Anionanion' approa	ches (inversion-related)	Anioncation' approa	ches
	(2- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)	Inversion-related appro	baches
O(1) <i>C</i> (5)	3.431(2) (C, C)	(1-x, 1-y, 1)	$1-z$) (Fig. S2(ζ)(iv))
C(1) <i>C</i> (6)	$3.431(2)$ (C, \overline{C})	C(1) <i>C</i> (07)	3.567(2) (C)
N(6)	3.459(2) (C, C)	<i>C</i> (<i>0</i> 8)	3.359(2) (C)
C(3) <i>O</i> (61)	3.414(2) (C, C)	<i>O</i> (<i>011</i>)	3.473(2) (C)
C(4) <i>O</i> (61)	3.412(3) (<i>c</i> , c)	C(2) <i>C</i> (08)	3.461(2) (C)
C(6) <i>C</i> (6)	$3.378(2)$ (<i>C</i> , \overline{C})	<i>C</i> (<i>09</i>)	3.527(2) (C)
		<i>O</i> (011)	3.413(2) (C)
	(2-x, 2-y, z)	C(3) <i>N</i> (01)	3.322(3) (C)
O(41) <i>N</i> (2)	2.930(2) (C, \overline{C})	<i>C</i> (<i>0</i> 2)	3.579(3) (C)
<i>O</i> (21)	$3.101(2) (C, \overline{C})$	C(09)	3.420(2) (C)
<i>O</i> (22)	2.931(2) (c, \overline{c})	C(4) <i>C</i> (09)	3.587(2) (C)
		C(010)	3.471(2) (C)

	(1-x, 2-y, 1-z)		C(5) <i>C</i> (05)	3.565(3)	(<i>C</i>)
O(22) <i>O</i> (22)	2.796(2)	(C, \overline{C})	<i>C</i> (010)	3.568(2)	(<i>C</i>)
			C(6) C(06)	3.594(3)	(<i>C</i>)
Cationcation' approa	ches (screw-related)		<i>C</i> (07)	3.465(2)	(<i>C</i>)
	(1-x, y-1/2, 1/2-z)		N(2) O(011)	3.333(2)	(<i>C</i>)
C(02) <i>C</i> (06)	3.597(3)		O(22) <i>H</i> , <i>N</i> (01)	2.73, 3.217(2)	(R)
C(03) <i>C</i> (06)	3.586(3)		<i>O</i> (011)	3.370(2)	(<i>C</i>)
			N(4) C(04)	3.384(2)	(<i>C</i>)
Anioncation' appro	aches (cont.)		O(41) <i>C</i> (03)	3.354(3)	(<i>C</i>)
Translation-related ap	oproaches		O(62) <i>C</i> (06)	3.500(3)	(<i>C</i>)
	(x, 1+y, z)				
O(21) <i>H</i> , <i>N</i> (01)	2.94(2), 3.392(2)	(R)		(2– <i>x</i> , 1– <i>y</i> , 1– <i>z</i>)	
H,C(02)	2.67(2), 3.284(2)	(R)	O(42) <i>C</i> (08)	3.215(2)	(<i>C</i>)
O(22) C(02)	3.486(2)	(C)	<i>O</i> (011)	3.164(2)	(<i>C</i>)
<i>O</i> (<i>011</i>)	3.199(2)	(C)			
H,N(01)	2.06(2), 2.890(2)	(R)		(1-x, y, 1-z)	
N(4) O(011)	3.239(2)	(<i>C</i>)	O(61) <i>H</i> , <i>C</i> (02)	2.67(2), 3.391(3)	(R)
Screw-related approa	ches		Glide-related approad	ches	
	$(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$			(1+x, 3/2-y, 1/2+z)	
O(21) <i>H</i> , <i>C</i> (05)	2.91(2), 3.430(2)	(R)	O(41) <i>H</i> , <i>C</i> (05)	2.58(2), 3.453(2)	(R)
			O(42) <i>H</i> , <i>C</i> (06)	2.71(2), 3.455(2)	(R)
				$(1+x, \frac{1}{2}-y, \frac{1}{2}+z)$	
			O(42) <i>H</i> , <i>C</i> (03)	2.54(2), 3.350(3)	(R)
			O(62) <i>H</i> , <i>C</i> (04)	2.44(2), 3.397(3)	(R)

 NO_2/C_6 interplanar dihedral angles: 34.44(7), 4.80(10), 9.08(14)°.

(ζ)(v) (**oqpic**) (*proto*-Meisenheimer Complex) (*C*2/*c*) (**JOKTOS**³⁰) (Fig. S1(ζ)(v))

8-Hydroxyquinoline-picrate, proto-Meisenheimer Complex

Screw-related approaches

	$(1-x, y, \frac{3}{2}-z)$		$(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z)$	
C(3) <i>C</i> (<i>3</i>)	3.538(9)	O(2)O(5)	3.076(9)	(C, \overline{C})
C(4) <i>C</i> (5)	3.482(9)	O(4) <i>C</i> (10)	3.075(7)	(C, \overline{C})
		<i>C</i> (11)	3.438(7)	(C, \overline{C})
		<i>C</i> (14)	3.482(8)	(C, \overline{C})
Inversion-related ap	pproaches	<i>C</i> (15)	3.022(8)	(C, \overline{C})
	$(\frac{1}{2}-x, y -\frac{1}{2}, 1-z)$	C(1) <i>O</i> (4)	3.287(7)	(C,\overline{C})
O(8) <i>O</i> (8)	2.48(2)*			
		Glide-related approa	aches	
	$(\frac{1}{2}-x, \frac{1}{2}-y, 1-z)$		(x, 1-y, z-1/2)	
O(5) <i>O</i> (6)	2.912(15) (c, \overline{c})	O(2) <i>C</i> (1)	3.298(9)	(C, \overline{C})
N(1)	3.331(9) (C)	<i>C</i> (2)	3.423(10)	(C, \overline{C})
O(6) <i>N</i> (3)	$3.010(15)$ (C, \overline{C})			

C(13)	3.458(15)	(C, \overline{C})		$(x, y, \frac{1}{2}+z)$	
O(8)H(1)	2.66*		O(6) <i>N</i> (2)	3.183(13)	(C,\overline{C})
			<i>O</i> (<i>3</i>)	3.220(12)	(C, \overline{C})
	(1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)		<i>C</i> (11)	3.373(15)	(C,\overline{C})
O(2)H(3)(,C(5))	2.63, 3.581(8)	(R)	<i>C</i> (<i>12</i>)	3.312(16)	(C, \overline{C})
C(3) <i>C</i> (5)	3.546(10)		O(8) <i>H</i> (7), <i>C</i> (12)	2.54,3.282(18)	(\overline{L})
			<i>O</i> (4)	3.370(20)	(C,\overline{C})
	(1-x, y, 1-z)				
O(3)H(4), C(6)	2.59, 3.340(8)	(R)		$(\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z)$	
			C(1) <i>O</i> (4)	3.289(7)	(\overline{C})
Translation related ag	pproaches				
	Nil			(<i>x</i> -1/2, 1/2- <i>y</i> , <i>z</i> -1/2)	
			O(5) <i>H</i> (3), <i>C</i> (5)	2.76(5), 3.273(7)	(R)
Intramolecular distar	nces		H(4), C(6)	2.61(5), 3.298(7)	(R)
O(1) <i>O</i> (<i>3</i> , <i>6</i>)	2.898(7), 2.607(16)				
O(3) <i>C</i> (8)	2.783(8)				
N(1)C(10)	2.792(7)				

 NO_2/C_6 interplanar dihedral angles: 38.9(3), 3.7(5), 42.1(8)/31.7(3)°.

 $^{*}O(8)$ is a disordered component of O(7), removed in production of the fingerprint plot.

(ζ)(vi) (**omppic**) (Meisenheimer Complex) (**P2**₁/*n*) (**JOKTIM**³⁰) (Fig. S1(ζ)(vi)

2-Hydroxymethylpyridine picrate, Meisenheimer Complex

Inversion-related approac	hes		Glide-related approaches		
	(1- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>)			$(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z)$	
O(2)O(5)	3.352(3)	(C,\overline{C})	O(1) <i>H</i> , <i>C</i> (5)	2.76(2), 3.491(3)	(R)
O(3) <i>O</i> (4)	3.308(3)	(C,\overline{C})	O(2) <i>C</i> (4)	3.179(4)	(<i>C</i>)
<i>O</i> (5)	3.218(3)	(C,\overline{C})	<i>C</i> (5)	3.189(3)	(<i>C</i>)
N(3)	3.092(3)	(C, \overline{C})	O(3) <i>O</i> (6)	2.835(3)	(C, \overline{C})
O(5) <i>N</i> (2)	3.026(3)	(C,\overline{C})	N(4)	3.155(3)	(C, \overline{C})
H,C(6)	2.77(3), 3.139(3)	(R)	<i>C</i> (5)	3.484(4)	(<i>C</i>)
<i>C</i> (8)	3.310(3)	(C,\overline{C})	<i>C</i> (6)	3.427(3)	(<i>C</i>)
N(2) <i>N</i> (3)	3.379(3)	(C, \overline{C})	N(2) <i>C</i> (5)	3.301(3)	(<i>C</i>)
C(9) <i>H</i> (7), <i>C</i> (9)	3.00(3), 3.443(4)	$(P_R, \overline{P_L})$			
	(1-r v 1-7)			$(x-\frac{1}{2}, \frac{1}{2}-v, \frac{1}{2}+z)$	
O(1) <i>H</i> (8), <i>C</i> (11)	2.73(2), 3.176(4)	$(\mathbf{R}, \overline{L})$	O(2) <i>O</i> (4)	3.239(4)	(C, \overline{C})
O(4) <i>O</i> (1)	3.159(3)	(C, \overline{C})	H(1),C(1)O(4)	2.74, 3.448(4)	(\overline{R})

$$H(2), C(1)$$
2.48(3), 3.194(3) (\mathbf{R}) $C(2)...O(4)$ 3.351(4) (\overline{c}) $O(6)...N(3)$ 3.304(3) (c, \overline{c}) $H, C(3)...O(4)$ 2.84, 3.133(2) $(\overline{\mathbf{R}})$

<i>C</i> (10)	3.422(3)	(C, \overline{C})					
O(7) <i>C</i> (9)	3.482(4)	(C, \overline{C})	Translation-related a	approaches			
N(3) <i>O</i> (6)	3.304(3)	(C, \overline{C})		(x+1, y, z)			
N(4) <i>C</i> (10)	3.449(4)	(C, \overline{C})	O(5) <i>H</i> , <i>C</i> (4)	2.48(4), 3.417(4)	(\overline{R})		
C(11) <i>C</i> (12)	3.545(4)						
			Screw-related appro	roaches			
	(x, y, 1-z)			$(\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z)$			
O(6) <i>H</i> , <i>C</i> (3)	2.69(2), 3.397(4)	(R)	O(2) <i>H</i> (1), <i>C</i> (1)	2.83(2), 3.070(4)	(R)		
			H(2)	2.52(3)	(R)		
Intramolecular distant	ces						
O(1) <i>O</i> (2,6)	2.782(3), 2.751(2)			$(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z)$			
O(2) <i>H</i> (1), <i>C</i> (1)	2.63(2), 2.921(3)	(R)	H,C(6) <i>O</i> (7)	2.42(3), 3.147(4)	(\overline{R})		

NO₂/C₆ interplanar dihedral angles: 7.94(11), 3.5 (2), 5.9(2)°.

2.59(3), 2.911(4) **(***R***)**

O(6)...*H*(2),*C*(1)

	NN	NH	NC	N0	НН	НС	НО	СС	СО	00
(picH) (PICRAC13 ^{1g}) (mol.1)	0	0.1	0.6	12.1	0.7	0	35.1	0	26.15	25.1
(mol.2)	0	1.9	0	10.7	0.8	0.3	33.7	0	26.1	26.4
(pyH)(pic) (PYRPIC02 ^{11c})		2.3	1.8	6.3	1.0	4.3	59.4	8.1	6.1	10.7
(PYRPIC03 ^{11c})	1.2	0.7	2.3	5.7	3.7	4.2	56.0	5.8	9.7	10.7
(pyH)(pic)(·naph) (PYNPCR ²⁰)	n/a	-	-	-	-	-	-	-	-	-
(2mpH)(pic) (units 1) (this work)	0	1.8	1.5	7.2	2.7	6.2	51.1	4.6	11.9	12.9
(units 2)	0.1	2.2	1.4	7.9	2.2	5.3	49.7	5.6	11.7	14.4
(dpaH)(pic) (this work)	0.2	4.4	3.8	5.3	5.1	4.7	55.9	6.8	9.3	4.5
(pipH)(pic) (VAZJAI ²¹)	0.1	2.5	2.9	4.0	4.0	4.8	59.0	8.3	2.8	11.1
(pipH)(pic)(·pip) (this work)	0	2.9	0.7	6.6	5.5	1.0	66.2	11.8	2.4	2.9
(morH)(pic) (units 1) (KOMTUC ^{22a})	0	1.2	0.6	8.0	7.5	6.8	52.5	4.4	5.0	13.9
(units 2)	0	1.9	0.6	7.4	5.1	8.7	55.0	4.5	4.5	12.2
$2[(morH)(pic)](\cdot H_2O)$ (units 1) (this work)	0	1.8	4.1	2.5	2.7	3.2	61.7	6.5	7.0	10.5
(units 2)	0	3.1	2.1	4.7	6.0	5.8	57.9	2.9	7.4	10.1
(bpyH)(pic) (UCOFUO ²³)	0.8	2.1	4.2	5.6	3.7	5.5	61.4	5.0	7.6	4.2
(bpyH)(pic)(·MeCN) (this work)	0.6	1.0	3.9	6.1	8.5	2.7	59.7	7.9	5.9	3.8
(bpy'H ₂)(pic) ₂ (KAMPIY ²⁴)	0.4	2.8	4.0	4.5	4.7	6.0	44.2	0.1	19.9	13.5
$(bpy'H_2)(pic)_2(\cdot H_2O) (UJOQUF^{25})$	0	1.1	4.3	6.3	1.6	8.0	48.8	0.3	16.8	12.9
(tpyH)(pic) (this work)	1.4	2.9	4.9	3.2	7.6	4.8	54.4	6.9	8.4	5.6
(phenH)(pic) (this work)	1.0	0.9	5.1	5.8	6.3	7.5	50.3	6.7	8.9	8.4
(NH ₄)(pic)(·phen) (AMPCPL ^{26a})	1.4	3.6	3.3	3.3	5.9	7.6	57.1	5.1	8.5	4.1
'[(phenH)(bpy'H)(phen)](pic) ₂ ' (INOSUZ ²⁷)	0.7	0.5	1.9	5.2	5.4	6.3	58.0	6.5	7.9	7.5
(dmpH)(pic) (this work)	1.5	2.2	1.1	6.1	7.6	7.7	60.1	5.3	5.9	2.5

(quinH)(pic) (UBEGAL ⁸)	0	2.6	1.5	6.6	3.6	8.5	57.0	0.6	13.3	6.4
(iqH)(pic) (JUSRUK ²⁸)	0	3.5	2.4	2.0	6.3	4.5	52.4	10.1	5.2	13.4
(2mqH)(pic) (VATTER ²⁹)	0.4	1.7	0.2	6.5	4.6	8.9	55.7	3.7	8.4	9.7
(ohqH)(pic) (this work)	0	1.4	4.1	3.6	8.0	2.8	50.8	7.1	9.7	12.4
(oqpic) (Meisenheimer precursor) (JOKTOS ³⁰)	n/a	-	-	-	-	-	-	-	-	-
(omppic) (Meisenheimer compound) (JOKTIM ³⁰)	n/a	-	-	-	-	-	-	-	-	-

Proportions of contacts (%) of particular type as evidenced from Hirshfeld surface calculations.

- Fig. S1 Unit cell projections for the compounds of Table 1 (projections down *a*, *b*, *c*, respectively)
- (α) Picric acid see main text
- (β) Pyridinium and 2-substituted pyridinium (substituents other than pyridyl) picrates

(i) Pyridinium picrate, (**pyH**)(**pic**) (**P2**₁/*c*) (**PYRPIC02**^{11c})

(ii) Pyridinium picrate, $(\mathbf{pyH})(\mathbf{pic})$ (**P**1) (**PYRPIC03**^{11c})

(iii) Pyridinium picrate : 1-naphthylamine (1:1), $(\mathbf{pyH})(\mathbf{pic})(\mathbf{\cdot naph})$ (**P2**₁/*a*) (**PYNPCR**²⁰); additional projections are shown down (011) and (0111), showing the parallel packing of the planar entities

(iv) 2-Methylpyridinium picrate, (**2mpH**)(**pic**) (x2) (P_{1}) (this work); additional projections are shown down *c*, for the sections of the unit cell bounded by z = -0.25-0.75 and 0.25-0.75, made up of molecules 1 and 2, respectively

(v) (2-Pyridinium)(2-pyridyl)amine picrate, $(dpaH)(pic) (P2_1/c)$ (this work)

 (γ) Aza-alicyclic base salts – Saturated derivatives of pyridinium picrate

(i) Piperidinium picrate, (**pipH**)(**pic**) (P 1) (**VAZJAI**²¹)

(ii) Piperidinium picrate monopiperidine solvate, $(pipH)(pic)(\cdot pip) (P2_1/n)$ (this work)

(iii) Morpholinium picrate, (morH)(pic) (x2) (P1) (KOMTUC^{22a})

(iv) Morpholinium picrate hemihydrate, $2[(morH)(pic)](\cdot H_2O)(C2/c)$ (this work)

(δ) Bipyridinium picrates and derivative systems

(i) 2,2'-BipyridylH⁺ picrate, (**bpyH**)(**pic**) (P_1) (**UCOFUO**²³)

(ii) 2,2'-BipyridylH⁺ picrate acetonitrile monosolvate, (**bpyH**)(**pic**)(·MeCN) (x2) (P_{1}) (this work)

(iii) 4,4'-Bipyridyl H $_{2}^{2+}$ bis(picrate), (**bpy'H**₂)(**pic**)₂ (x0.5) (P_{1}) (**KAMPIY**²⁴)

(iv) 4,4'-Bipyridyl H $_2^{2+}$ bis(picrate) monohydrate, (**bpy'H**₂)(**pic**)₂(·**H**₂**O**) (*C*2/*c*) (**UJOQUF**²⁵)

(v) 2,2':6',2"-Terpyridinium picrate, (tpyH)(pic) (P1) (this work)

(ϵ) 1,10-Phenanthrolinium picrate and derivative systems

(i) 1,10-Phenanthrolinium picrate, (**phenH**)(**pic**) (*P*2₁/*c*) (this work)

(ii) Ammonium picrate : 1,10-phenanthroline (1:1), (NH_4)(pic)(·phen) ($P2_1/c$) (AMPCPL^{26a})

(iii) '1,10-Phenanthrolinium 4,4'-bipyridyl H^+ 1,10-phenanthroline' bis(picrate), '[(phenH)(bpy'H)(phen)](pic)₂' (x0.5) ($P \overline{1}$) (INOSUZ²⁷)

(iv) 2,9-Dimethyl-1,10-phenanthrolinium picrate, (**dmpH**)(**pic**) (P_{1}) (this work)

(ζ) Quinolinium picrate and derivative systems

(iii) 2-Methylquinolinium picrate, (2mqH)(pic) (P1) (VATTER²⁹)

(v) 8-Hydroxyquinolinium picrate 'Meisenheimer Salt' precursor, (oqpic) (C2/c) (JOKTOS³⁰)

(vi) 2-Hydroxymethylpyridine 'Meisenheimer Salt', (omppic) ($P2_1/n$) (JOKTIM³⁰)

Fig. S2 Aromatic overlap projections for the compounds of Table 1

All overlaps involve at least one picrate anion and are shown in projection normal to the plane of that (solid bonds).

- (α) Overlaps in the structure of picric acid (**picH**) (**PICRAC13**^{1g}) are peripheral and are not shown.
- (β) Pyridinium and 2-substituted pyridinium (substituents other than pyridyl) salts

(i) Pyridinium picrate, (**pyH**)(**pic**) (**P2**₁/*c*) (**PYRPIC02**^{11c}), anion (*x*, *y*, 1–*z*) on anion (Table S6(β)(i))

(ii) Pyridinium picrate, (**pyH**)(**pic**) (P_1) (**PYRPIC03**^{11c}), anion (x, 1+y, z) on anion (Table S6(β)(ii))

(iii) Pyridinium picrate : 1-naphthylamine (1:1), $(\mathbf{pyH})(\mathbf{pic})(\mathbf{\cdot naph})(\mathbf{P2_1/a})$ (**PYNPCR**²⁰), anion (1–*x*, 2–*y*, \overline{z}) on anion (Table S6(β)(iii))

(iv) 2-Methylpyridinium picrate, (**2mpH**)(**pic**) (x2) (*P*1) (this work), all anion on anion: left (\bar{x} , 1–y, 1– z) (anions 1); middle (1–x, 1–y, \bar{z}) (anions 2); right: anion 2 (x, y, z) on anion 1 (Table S6(β)(iv))

(v) (2-Pyridinium)(2-pyridyl)amine picrate, (**dpaH**)(**pic**) (**P2**₁/*c*) (this work), left: cation (x, $\frac{1}{2}-y$, $\frac{1}{2}+z$) on anion, right: anion (1–x, \overline{y} , 1–z) on anion (Table S6(β)(v))

 (γ) Aza-alicyclic base salts – Saturated derivatives of pyridinium picrate

(i) Piperidinium picrate, (**pipH**)(**pic**) $(P \overline{1})$ (**VAZJAI**²¹), anion $(1-x, 2-y, \overline{z})$ on anion (Table S6(γ)(i))

(ii) Piperidinium picrate monopiperidine solvate, (**pipH**)(**pic**)(·**pip**) (*P2*₁/*n*) (this work), anion $(\overline{x}, \overline{y}, \overline{z})$ on anion (Table S6(γ)(ii))

(iii) Morpholinium picrate, (morH)(pic) (x2) $(P\overline{1})$ (KOMTUC^{22a}), left: anion 1 (2–*x*, 1–*y*, \overline{z}) on anion 1, right: anion 2 (2–*x*, 1–*y*, \overline{z}) on anion 2 (Table S6(γ)(iii))

(iv) Morpholinium picrate hemihydrate, $2[(morH)(pic)](\cdot H_2O)(C2/c)$ (this work), anion 2 $(x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2})$ on anion 1 (Table S6(γ)(iv))

 (δ) Bipyridinium picrates and derivative systems

(i) 2,2'-BipyridylH⁺ picrate, (**bpyH**)(**pic**) ($P\overline{1}$) (**UCOFUO**²³), left: anion (2–*x*, 1–*y*, 1– \overline{z}) on anion, right: cation (1–*x*, 1–*y*, 1–*z*) on anion (Table S6(δ)(i))

(ii) 2,2'-BipyridylH⁺ picrate acetonitrile monosolvate, (**bpyH**)(**pic**)(·MeCN) (x2) (P_{1}) (this work), anion $(1-x, \overline{y}, \overline{z})$ on anion (Table S6(δ)(ii))

(iii) 4,4'-Bipyridyl H $_2^{2+}$ bis(picrate), (**bpy'H**₂)(**pic**)₂ (x0.5) (P $\overline{1}$) (**KAMPIY**²⁴), left: anion (x-1, y, z) on anion, right: anion (2-x, \overline{y} , \overline{z}) on anion (Table S6(δ)(iii))

(iv) 4,4'-Bipyridyl H $_2^{2+}$ bis(picrate) monohydrate, (**bpy'H**₂)(**pic**)₂(·**H**₂**O**)(*C*2/*c*) (**UJOQUF**²⁵), left: cation (2–*x*, *y*, $\frac{1}{2}$ –*z*) on anion, right: anion ($\frac{5}{2}$ –*x*, $\frac{1}{2}$ –*y*, 1–*z*) on anion (Table S6(δ)(iv))

(v) 2,2':6',2"-Terpyridinium picrate, (tpyH)(pic)(P1) (this work), left: cation (1-x, 1-y, 1-z) on anion, right: anion (x, 1-y, 1-z) on anion (Table S6(δ)(v))

(ɛ) 1,10-Phenanthrolinium picrate and derivative systems

(i) 1,10-Phenanthrolinium picrate, (**phenH**)(**pic**) (*P*2₁/*c*) (this work), left: cation $(1-x, \frac{1}{2}+y, \frac{1}{2}-z)$ on anion, right: cation $(1-x, y-\frac{1}{2}, \frac{1}{2}-z)$ on anion (Table S6(ε)(i))

(ii) Ammonium picrate : 1,10-phenanthroline (1:1), (**NH**₄)(**pic**)(·**phen**) (**P2**₁/*c*) (**AMPCPL**^{26a}), left: phenanthroline $(1-x, \overline{y}, 1-z)$ on anion, right: cation on anion (Table S6(ε)(ii))

(iii) '1,10-Phenanthrolinium 4,4'-bipyridylH⁺ 1,10-phenanthroline bis(picrate)', '[(phenH)(bpy'H)(phen)](pic)₂' (x0.5) (P 1) (INOSUZ²⁷), left: anion (1–x, 2–y, 1–z) on anion, right: 4,4'-bipyridylH⁺ (1–x, 1–y, 1–z) on anion (Table S6(ε)(iii))

(iv) 2,9-Dimethyl-1,10-phenanthrolinium picrate, (**dmpH**)(**pic**) (P_1) (this work), anion (1-x, 2-y, 1-z) on anion (Table S6(ε)(iv))

 (ζ) Quinolinium picrate and derivative systems

(i) Quinolinium picrate, (**quinH**)(**pic**) ($P2_1/c$) (**UBEGAL**⁸) has no significant overlaps; Figure shows approach of anion (2–*x*, 2–*y*, 1–*z*) to anion (*x*, *y*, *z*) (Table S6(ζ)(i))

(ii) iso-Quinolinium picrate, (iqH)(pic) (P2₁/a) (JUSRUK²⁸), left: cation (x, y-1, z) on anion, right: cation (1-x, 1-y, z) on anion (Table S6(ζ)(ii))

(iii) 2-Methylquinolinium picrate, (**2mqH**)(**pic**) (P 1) (**VATTER**²⁹), anion (\overline{x} , 2–y, 2–z) on anion (Table S6(ζ)(iii))

(iv) 8-Hydroxyquinolinium picrate, (**ohqH**)(**pic**) ($P2_1/c$) (this work), left: anion (2–*x*, 1–*y*, 1–*z*) on anion, right: cation (1–*x*, 1–*y*, 1–*z*) on anion (Table S6(ζ)(iv))

Fig. S3 Hirshfeld surfaces for the anionic and cationic components of the compounds of Table 1

These are shown for the anion (upper) and cation (lower) (projections normal to the associated picrate). Property d_{norm} mapped, range -0.42 (red) to 1.6 Å (blue) (see more details in the text).

(α) The parent picric acid (**picH**) (*Pna2*₁) (**PICRAC13**^{1g}), two independent molecules (upper, lower), full asymmetric unit shown

 (β) Pyridinium and 2-substituted pyridinium (substituents other than pyridyl) picrates

(ii) Pyridinium picrate, (**pyH**)(**pic**) $(P\overline{1})$ (**PYRPIC03**^{11c})

(iii) Pyridinium picrate : 1-naphthylamine (1:1), (**pyH**)(**pic**)(**·naph**) (**P2**₁/*a*) (**PYNPCR**²⁰)

(iv) 2-Methylpyridinium picrate, (2mpH)(pic) (x2) (P1) (this work)

(v) (2-Pyridinium)(2-pyridyl)amine picrate, (**dpaH**)(**pic**) (*P*2₁/*c*) (this work)

 (γ) Aza-alicyclic base salts – Saturated derivatives of pyridinium picrate

(i) Piperidinium picrate, $(pipH)(pic) (P\overline{1}) (VAZJAI^{21})$

(ii) Piperidinium picrate monopiperidine solvate, $(pipH)(pic)(\cdot pip) (P2_1/n)$ (this work)

(iii) Morpholinium picrate, (morH)(pic) (x2) (P 1) (KOMTUC^{22a})

(iv) Morpholinium picrate hemihydrate, 2[(morH)(pic)](·H₂O) (C2/c) (this work)

 (δ) Bipyridinium picrates and derivative systems

(i) 2,2'-BipyridylH⁺ picrate, (**bpyH**)(**pic**) (P_{1}) (**UCOFUO**²³)

(ii) 2,2'-BipyridylH⁺ picrate acetonitrile monosolvate, (**bpyH**)(**pic**) (•**MeCN**) (x2) ($P\overline{1}$) (this work)

(iii) 4,4'-Bipyridyl H $_{2}^{2+}$ bis(picrate), (**bpy'H**₂)(**pic**)₂ (x0.5) (P 1) (**KAMPIY**²⁴)

(iv) 4,4'-Bipyridyl H $_2^{2+}$ bis(picrate) monohydrate, (**bpy'H**₂)(**pic**)₂(·**H**₂**O**) (**C**2/*c*) (**UJOQUF**²⁵)

(v) 2,2':6',2"-Terpyridinium picrate, (tpyH)(pic) (P_{1}) (this work)

(ɛ) 1,10-Phenanthrolinium picrate and derivative systems

(i) 1,10-Phenanthrolinium picrate, (**phenH**)(**pic**) (*P*2₁/*c*) (this work)

(ii) Ammonium picrate : 1,10-phenanthroline (1:1), (NH_4)(pic)(·phen) ($P2_1/c$) (AMPCPL^{26a})

(iii) '1,10-Phenanthrolinium 4,4'-bipyridylH⁺ 1,10-phenanthroline' bis(picrate), '[(phenH)(bpy'H)(phen)](pic)₂' (x0.5) ($\bar{P_1}$) (INOSUZ²⁷)

(iv) 2,9-Dimethyl-1,10-phenanthrolinium picrate, (**dmpH**)(**pic**) (P_{1}) (this work)

(ζ) Quinolinium picrate and derivative systems

(i) Quinolinium picrate, (quinH)(pic) (P2₁/c) (UBEGAL⁸)

(ii) iso-Quinolinium picrate, $(iqH)(pic) (P2_1/a) (JUSRUK^{28})$

(iv) 8-Hydroxyquinolinium picrate, (ohqH)(pic) (P2₁/c) (this work)

(v) 8-Hydroxyquinolinium picrate Meisenheimer Salt 'precursor', (oqpic) (C2/c) (JOKTOS³⁰)

(vi) 2-Hydroxymethylpyridine 'Meisenheimer Salt', (omppic) $(P2_1/n)$ (JOKTIM³⁰)