Supplementary Material (ESI) for CrystEngComm

Four cluster-containing highly connected coordination networks: syntheses, structures, and photoluminescence

Peng Du^a, Yan Yang^a, Da-Wei Kang^{a,b}, Jin Yang^a, Ying-Ying Liu^{*a} and Jian-Fang Ma^{*a}

^a Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

^b College of Chemistry and Chemical Engineering, Inner Mongolia University for the Nationalities, Tongliao, 028000, China

Table S1. Selected bond distances (Å) and angles (°) for 1.

Zn(1)-O(1)	2.426(5)	Zn(1)-O(2)	1.982(5)
Zn(1)-O(4) ^{#2}	2.002(5)	Zn(1)-O(6) ^{#1}	1.955(5)
Zn(1)-O(15)	1.965(4)	Zn(2)-O(8)	1.894(5)
Zn(2)-O(11) ^{#3}	1.986(5)	Zn(2)-O(15)	1.896(4)
Zn(2)-N(4)#4	2.070(7)	Zn(3)-O(3)#2	2.014(5)
Zn(3)-O(5) ^{#1}	2.095(5)	Zn(3)-O(13)#4	2.290(6)
Zn(3)-N(1)	2.022(6)	Zn(3)-O(15)	1.984(4)
Zn(4)-O(10) ^{#3}	1.946(5)	Zn(4)-O(15)	1.943(4)
Zn(4)-O(12)#4	2.016(5)	Zn(4)-N(7)	1.985(6)
O(6) ^{#1} -Zn(1)-O(15)	106.9(2)	O(6) ^{#1} -Zn(1)-O(2)	104.8(2)
O(15)-Zn(1)-O(2)	132.2(2)	O(6) ^{#1} -Zn(1)-O(4) ^{#2}	102.0(2)
O(15)-Zn(1)-O(4) ^{#2}	104.95(18)	O(2)-Zn(1)-O(4) ^{#2}	102.3(2)
O(6) ^{#1} -Zn(1)-O(1)	95.0(2)	O(15)-Zn(1)-O(1)	84.62(18)
O(2)-Zn(1)-O(1)	57.7(2)	O(4) ^{#2} -Zn(1)-O(1)	156.81(19)
O(8)-Zn(2)-O(15)	125.1(2)	O(8)-Zn(2)-O(11) ^{#3}	109.9(2)
O(15)-Zn(2)-O(11) ^{#3}	112.94(19)	O(8)-Zn(2)-N(4)#4	98.8(3)
O(15)-Zn(2)-N(4)#4	111.5(2)	O(11) ^{#3} -Zn(2)-N(4) ^{#4}	93.0(2)

O(15)-Zn(3)-O(3) ^{#2}	95.98(19)	O(15)-Zn(3)-N(1)	161.0(2)
O(3) ^{#2} -Zn(3)-N(1)	93.4(2)	O(15)-Zn(3)-O(5) ^{#1}	104.48(17)
O(3) ^{#2} -Zn(3)-O(5) ^{#1}	92.6(2)	N(1)-Zn(3)-O(5) ^{#1}	91.5(2)
O(15)-Zn(3)-O(13)#4	90.25(18)	O(3) ^{#2} -Zn(3)-O(13) ^{#4}	169.3(2)
N(1)-Zn(3)-O(13)#4	78.2(2)	O(5) ^{#1} -Zn(3)-O(13) ^{#4}	94.3(2)
O(15)-Zn(4)-O(10) ^{#3}	113.81(19)	O(15)-Zn(4)-N(7)	122.0(2)
O(10) ^{#3} -Zn(4)-N(7)	109.1(2)	O(15)-Zn(4)-O(12)#4	115.2(2)
O(10) ^{#3} -Zn(4)-O(12) ^{#4}	94.4(2)	N(7)-Zn(4)-O(12)#4	97.9(2)
Symmetry codes for 1: ^{#1} x,-y-0.5,z+0.5; ^{#2} x,y+1,z; ^{#3} x,y-1,z; ^{#4} -x+1,y-0.5,-z+1.5.			

Table S2. Selected bond distances (Å) and angles (°) for 2.

Zn(1)-O(1)	1.899(2)	Zn(1)- O(4) ^{#1}	1.938(2)
Zn(1)-O(13) ^{#2}	1.982(3)	Zn(1)-O(16) ^{#2}	1.984(2)
Zn(2)-O(8)	1.932(2)	Zn(2)-O(11) ^{#1}	1.925(2)
Zn(2)-O(15)	1.944(2)	Zn(2)-O(1W)	2.042(3)
Zn(3)-O(15)	2.064(2)	Zn(3)-O(16) ^{#3}	2.070(2)
Zn(3)-O(6) ^{#3}	2.092(2)	Zn(3)-O(2)#4	2.094(2)
Zn(3)-O(10) ^{#1}	2.143(2)	Zn(3)-O(15) ^{#15}	2.160(2)
Zn(4)-O(12)	1.969(2)	Zn(4)-O(16)	1.982(2)
Zn(4)-N(1)	1.991(2)	Zn(4)-O(5)	2.082(2)
Zn(4)-O(3)#6	2.180(2)	O(1)-Zn(1)-O(4) ^{#1}	128.03(9)
O(1)-Zn(1)-O(13) ^{#2}	102.01(11)	O(4) ^{#1} -Zn(1)-O(13) ^{#2}	97.43(11)
O(1)-Zn(1)-O(16) ^{#2}	112.90(10)	O(4) ^{#1} -Zn(1)-O(16) ^{#2}	105.07(9)
O(13) ^{#2} -Zn(1)-O(16) ^{#2}	109.10(10)	O(11) ^{#1} -Zn(2)-O(8)	126.73(9)
O(11) ^{#1} -Zn(2)-O(15)	113.03(9)	O(8)-Zn(2)-O(15)	114.45(9)
O(11) ^{#1} -Zn(2)-O(1W)	97.75(10)	O(8)-Zn(2)-O(1W)	94.33(11)
O(15)-Zn(2)-O(1W)	102.55(10)	O(15)-Zn(3)-O(16) ^{#3}	169.41(9)
O(15)-Zn(3)-O(6) ^{#3}	94.48(9)	O(16) ^{#3} -Zn(3)-O(6) ^{#3}	94.79(9)
O(15)-Zn(3)-O(2) ^{#4}	92.30(8)	O(16) ^{#3} -Zn(3)-O(2) ^{#4}	93.23(8)
O(6) ^{#3} -Zn(3)-O(2) ^{#4}	87.39(10)	O(15)-Zn(3)-O(10) ^{#1}	88.66(8)

O(16) ^{#3} -Zn(3)-O(10) ^{#1}	86.21(8)	O(6) ^{#3} -Zn(3)-O(10) ^{#1}	90.06(10)
O(2) ^{#4} -Zn(3)-O(10) ^{#1}	177.34(10)	O(15)-Zn(3)-O(15) ^{#5}	79.35(9)
O(16) ^{#3} -Zn(3)-O(15) ^{#5}	91.28(8)	O(6) ^{#3} -Zn(3)-O(15) ^{#5}	173.75(8)
O(2) ^{#4} -Zn(3)-O(15) ^{#5}	93.75(9)	O(10) ^{#1} -Zn(3)-O(15) ^{#5}	88.86(9)
O(12)-Zn(4)-O(16)	122.17(9)	O(12)-Zn(4)-N(1)	103.35(11)
O(16)-Zn(4)-N(1)	133.91(11)	O(12)-Zn(4)-O(5)	92.17(11)
O(16)-Zn(4)-O(5)	95.69(9)	N(1)-Zn(4)-O(5)	88.94(10)
O(12)-Zn(4)-O(3) ^{#6}	85.62(10)	O(16)-Zn(4)-O(3) ^{#6}	86.15(9)
N(1)-Zn(4)-O(3)#6	90.83(9)	O(5)-Zn(4)-O(3)#6	177.66(10)

Symmetry codes for **2**: ^{#1} x-1,y,z; ^{#2} -x+1,-y-1,-z+1; ^{#3} -x+1,-y,-z; ^{#4} x,y+1,z-1; ^{#5} -x+1,-y+1,-z; ^{#6} -x+2,-y-1,-z+1.

 Table S3. Selected bond distances (Å) and angles (°) for 3.

Cd(1)-O(4) ^{#1}	2.208(2)	Cd(1)-O(15)	2.254(2)
Cd(1)-O(1)	2.270(2)	Cd(1)-O(13)	2.333(3)
Cd(1)-O(2)	2.390(2)	Cd(1)-O(8) ^{#2}	2.534(3)
Cd(2)-O(12)	2.135(2)	Cd(2)-O(15)	2.172(2)
Cd(2)-N(1)	2.201(3)	Cd(2)-O(1W)	2.315(3)
Cd(2)-O(2W)	2.435(3)	Cd(3)-O(16) ^{#3}	2.272(2)
Cd(3)-O(15)	2.282(2)	Cd(3)-O(10)#4	2.284(2)
Cd(3)-O(3) ^{#1}	2.286(2)	Cd(3)-O(16)	2.297(3)
Cd(3)-O(5) ^{#5}	2.349(3)	Cd(4)-O(11) ^{#6}	2.187(2)
Cd(4)-O(16)	2.221(2)	Cd(4)-O(9) ^{#2}	2.252(2)
Cd(4)-O(6) ^{#7}	2.306(3)	Cd(4)-O(4) ^{#1}	2.496(2)
Cd(4)-O(8) ^{#2}	2.533(2)	O(4) ^{#1} -Cd(1)-O(15)	103.86(8)
O(4) ^{#1} -Cd(1)-O(1)	108.10(8)	O(15)-Cd(1)-O(1)	147.35(8)
O(4) ^{#1} -Cd(1)-O(13)	104.98(9)	O(15)-Cd(1)-O(13)	94.41(9)
O(1)-Cd(1)-O(13)	83.81(10)	O(4)#1-Cd(1)-O(2)	158.01(9)
O(15)-Cd(1)-O(2)	91.26(8)	O(1)-Cd(1)-O(2)	56.19(8)
O(13)-Cd(1)-O(2)	89.40(9)	O(4) ^{#1} -Cd(1)-O(8) ^{#2}	83.20(8)

O(15)-Cd(1)-O(8) ^{#2}	92.05(8)	O(1)-Cd(1)-O(8) ^{#2}	85.29(9)
O(13)-Cd(1)-O(8) ^{#2}	168.00(9)	O(2)-Cd(1)-O(8) ^{#2}	80.35(8)
O(12)-Cd(2)-O(15)	116.99(9)	O(12)-Cd(2)-N(1)	117.27(11)
O(15)-Cd(2)-N(1)	125.64(11)	O(12)-Cd(2)-O(1W)	91.91(10)
O(15)-Cd(2)-O(1W)	87.77(9)	N(1)-Cd(2)-O(1W)	93.31(12)
O(12)-Cd(2)-O(2W)	81.98(11)	O(15)-Cd(2)-O(2W)	94.84(11)
N(1)-Cd(2)-O(2W)	89.66(12)	O(1W)-Cd(2)-O(2W)	173.89(10)
O(16) ^{#3} -Cd(3)-O(10) ^{#4}	87.63(9)	O(16) ^{#3} -Cd(3)-O(15)	166.05(9)
O(10) ^{#4} -Cd(3)-O(15)	88.63(9)	O(16) ^{#3} -Cd(3)-O(3) ^{#1}	97.41(8)
O(10) ^{#4} -Cd(3)-O(3) ^{#1}	170.82(9)	O(15)-Cd(3)-O(3) ^{#1}	88.21(8)
O(16) ^{#3} -Cd(3)-O(16)	79.26(10)	O(10)#4-Cd(3)-O(16)	95.68(9)
O(15)-Cd(3)-O(16)	87.74(8)	O(3) ^{#1} -Cd(3)-O(16)	92.81(8)
O(16) ^{#3} -Cd(3)-O(5) ^{#5}	92.16(9)	O(10)#4-Cd(3)-O(5)#5	86.39(9)
O(15)-Cd(3)-O(5) ^{#5}	101.02(9)	O(3) ^{#1} -Cd(3)-O(5) ^{#5}	85.75(9)
O(16)-Cd(3)-O(5) ^{#5}	171.06(8)	O(11)#6-Cd(4)-O(16)	120.59(9)
O(11) ^{#6} -Cd(4)-O(9) ^{#2}	97.19(9)	O(16)-Cd(4)-O(9) ^{#2}	142.12(8)
O(11) ^{#6} -Cd(4)-O(6) ^{#7}	94.52(11)	O(16)-Cd(4)-O(6) ^{#7}	87.41(10)
O(9) ^{#2} -Cd(4)-O(6) ^{#7}	86.83(10)	O(11) ^{#6} -Cd(4)-O(4) ^{#1}	94.15(9)
O(16)-Cd(4)-O(4) ^{#1}	90.17(8)	O(9) ^{#2} -Cd(4)-O(4) ^{#1}	89.79(9)
O(6) ^{#7} -Cd(4)-O(4) ^{#1}	171.02(9)	O(11) ^{#6} -Cd(4)-O(8) ^{#2}	150.01(9)
O(16)-Cd(4)-O(8) ^{#2}	88.59(8)	O(9) ^{#2} -Cd(4)-O(8) ^{#2}	54.49(8)
O(6) ^{#7} -Cd(4)-O(8) ^{#2}	93.50(9)	O(4) ^{#1} -Cd(4)-O(8) ^{#2}	77.79(8)

Symmetry codes for **3**: ^{#1} x+1,y,z; ^{#2} x,y,z+1; ^{#3} -x+3,-y+2,-z+1; ^{#4} -x+2,-y+2,-z; ^{#5} -x+2,y+1,-z+1; ^{#6} x+1,y,z+1.

Table S4. Selected bond distances (Å) and angles (°) for 4.

Cd(1)-O(1)	2.274(5)	Cd(1)-O(1) ^{#1}	2.274(5)
Cd(1)-N(8)	2.306(6)	Cd(1)-N(8) ^{#1}	2.306(6)
Cd(1)-N(1) ^{#1}	2.424(6)	Cd(1)-N(1)	2.424(6)
Cd(2)-O(2)	2.211(5)	Cd(2)-N(12)#2	2.248(6)

5

Cd(2)-N(2)	2.277(6)	Cd(2)-O(1W)	2.285(6)
Cd(2)-N(7)	2.410(6)	Cd(2)-O(1)	2.621(5)
Cd(3)-N(6) ^{#3}	2.251(7)	Cd(3)-O(4) ^{#4}	2.290(6)
Cd(3)-N(10)	2.313(6)	Cd(3)-O(6)#5	2.332(6)
Cd(3)-O(3)#4	2.369(5)	Cd(3)-O(5) ^{#5}	2.403(6)
O(1)-Cd(1)-N(8)	86.26(19)	O(1)#1-Cd(1)-N(8)	93.74(19)
O(1) ^{#1} -Cd(1)-N(8) ^{#1}	86.26(19)	O(1)-Cd(1)-N(1) ^{#1}	93.61(19)
O(1) ^{#1} -Cd(1)-N(1) ^{#1}	86.39(19)	N(8)-Cd(1)-N(1) ^{#1}	95.2(2)
N(8) ^{#1} -Cd(1)-N(1) ^{#1}	84.8(2)	O(1)-Cd(1)-N(1)	86.39(19)
$O(1)^{\#1}-Cd(1)-N(1)$	93.61(19)	N(8)-Cd(1)-N(1)	84.8(2)
N(8) ^{#1} -Cd(1)-N(1)	95.2(2)	O(2)-Cd(2)-N(12) ^{#2}	121.8(2)
O(2)-Cd(2)-N(2)	133.4(2)	N(12) ^{#2} -Cd(2)-N(2)	104.7(2)
O(2)-Cd(2)-O(1W)	88.3(2)	N(12) ^{#2} -Cd(2)-O(1W)	90.7(2)
N(2)-Cd(2)-O(1W)	87.7(2)	O(2)-Cd(2)-N(7)	92.0(2)
N(12) ^{#2} -Cd(2)-N(7)	100.5(2)	N(2)-Cd(2)-N(7)	82.4(2)
O(1W)-Cd(2)-N(7)	166.6(2)	O(2)-Cd(2)-O(1)	53.04(17)
N(12) ^{#2} -Cd(2)-O(1)	174.78(19)	N(2)-Cd(2)-O(1)	80.43(19)
O(1W)-Cd(2)-O(1)	88.3(2)	N(7)-Cd(2)-O(1)	81.20(18)
N(6) ^{#3} -Cd(3)-O(4) ^{#4}	143.1(2)	N(6) ^{#3} -Cd(3)-N(10)	99.3(2)
O(4) ^{#4} -Cd(3)-N(10)	96.0(2)	N(6) ^{#3} -Cd(3)-O(6) ^{#5}	93.5(2)
O(4) ^{#4} -Cd(3)-O(6) ^{#5}	92.3(2)	N(10)-Cd(3)-O(6) ^{#5}	145.9(2)
N(6) ^{#3} -Cd(3)-O(3) ^{#4}	87.7(2)	O(4) ^{#4} -Cd(3)-O(3) ^{#4}	55.4(2)
N(10)-Cd(3)-O(3)#4	116.1(2)	O(6) ^{#5} -Cd(3)-O(3) ^{#4}	95.8(2)
N(6) ^{#3} -Cd(3)-O(5) ^{#5}	81.2(2)	O(4) ^{#4} -Cd(3)-O(5) ^{#5}	130.4(2)
N(10)-Cd(3)-O(5) ^{#5}	95.9(2)	O(6)#5-Cd(3)-O(5)#5	54.94(19)
O(3) ^{#4} -Cd(3)-O(5) ^{#5}	147.5(2)		

Fig. S1. The representation of tetranuclear $[Zn_4(\mu_4-O)(COO)_6]$ cluster in **1**.

Fig. S2. The representation of octanuclear $[Zn_8(\mu_3-O)_4(COO)_{12}]$ cluster in **2**.

Fig. S3. The presentation of octanuclear $[Cd_8(\mu_3-O)_4(COO)_{12}(H_2O)_2]$ cluster in **3**.

Fig. S4. The presentation of trinuclear $[Cd_3(COO)_2(H_2O)_2]$ unit in 4.

Fig. S5. The coordination modes of ipt anions in complex 4.

Fig. S7. Simulated (red) and experimental (blue) PXRD patterns of complexes 1-4.

Fig. S8 Luminescence decay curves for complexes 1–4 (the black circles represent experimental data, and the solid red lines represent fitting results) 1 ($\lambda_{em} = 437$ nm), 2 ($\lambda_{em} = 428$ nm), 3 ($\lambda_{em} = 481$ nm), 4 ($\lambda_{em} = 378$ nm).