Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Three Metal-Organic Frameworks Based on the Semirigid V-shaped 5-(3-Amino-Tetrazole-5-Phenoxy)-Isophthalic Acid Ligand: Syntheses, Topological structures, and Properties

Kang Liu, Yu Peng, Fen Yang, Dingxuan Ma, Guanghua Li, Zhan Shi^{*}and Shouhua

Feng

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

E-mail: zshi@mail.jlu.edu.cn

^{*} Corresponding author at: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China. *Tel:* +86 431 85168662; *Fax:*+86 431 85168624, E-mail address: zshi@mail.jlu.edu.cn (Z. Shi).

1					
Cd(1)-O(2)	2.267(3)	$Cd(1)-O(8)^{\#1}$	2.275(3)	$Cd(1)-O(3)^{\#1}$	2.311(3)
$Cd(1) - O(8)^{#2}$	2.375(3)	$Cd(1) - O(4)^{\#1}$	2.436(3)	$Cd(1)-N(8)^{\#3}$	2.503(4)
Cd(1)-O(1)	2.547(3)	Cd(2)-O(1)	2.231(3)	$Cd(2)-O(9)^{\#1}$	2.253(3)
Cd(2)-O(7)	2.275(3)	$Cd(2)-O(4)^{\#2}$	2.323(3)	Cd(2)-O(6)	2.357(3)
$Cd(2)-N(9)^{\#3}$	2.537(4)	$O(2)-Cd(1)-O(3)^{\#1}$	86.69(11)	$O(8)^{\#1}$ -Cd(1)-O(3)^{\#1}	132.63(10)
$O(2)-Cd(1)-O(8)^{\#1}$	139.72(10)	$O(8)^{\#1}$ -Cd(1)-O(8) $^{\#2}$	77.35(10)	$O(3)^{\#1}-Cd(1)-O(8)^{\#2}$	116.31(10)
O(2)-Cd(1)-O(8) ^{#2}	93.87(10)	$O(8)^{\#1}-Cd(1)-O(4)^{\#1}$	87.50(10)	$O(3)^{\#1}-Cd(1)-O(4)^{\#1}$	55.02(11)
$O(2)-Cd(1)-O(4)^{\#1}$	129.88(10)	$O(2)-Cd(1)-N(8)^{\#3}$	80.73(11)	$O(8)^{\#1}-Cd(1)-N(8)^{\#3}$	86.02(11)
$O(8)^{#2}-Cd(1)-O(4)^{#1}$	79.07(10)	$O(8)^{#2}$ -Cd(1)-N(8) ^{#3}	147.19(11)	$O(4)^{\#1}-Cd(1)-N(8)^{\#3}$	128.73(11)
$O(3)^{\#1}-Cd(1)-N(8)^{\#3}$	95.80(12)	$O(8)^{\#1}$ -Cd(1)-O(1)	85.42(10)	$O(3)^{\#1}-Cd(1)-O(1)$	139.54(10)
O(2)-Cd(1)-O(1)	54.31(10)	$O(4)^{\#1}-Cd(1)-O(1)$	159.34(10)	$N(8)^{#3}-Cd(1)-O(1)$	70.09(11)
O(8) ^{#2} -Cd(1)-O(1)	80.45(10)	O(1)-Cd(2)-O(7)	96.94(10)	O(9) ^{#1} -Cd(2)-O(7)	139.25(10)
O(1)-Cd(2)-O(9) ^{#1}	123.63(10)	$O(9)^{\#1}-Cd(2)-O(4)^{\#2}$	90.41(11)	O(7)-Cd(2)-O(4) ^{#2}	102.15(11)
O(1)-Cd(2)-O(4) ^{#2}	78.93(10)	O(9) ^{#1} -Cd(2)-O(6)	82.64(10)	O(7)-Cd(2)-O(6)	56.95(10)
O(1)-Cd(2)-O(6)	153.72(10)	$O(1)-Cd(2)-N(9)^{\#3}$	75.86(11)	$O(9)^{\#1}-Cd(2)-N(9)^{\#3}$	81.99(12)
O(4) ^{#2} -Cd(2)-O(6)	102.21(11)	$O(4)^{#2}-Cd(2)-N(9)^{#3}$	143.33(10)	O(6)-Cd(2)-N(9) ^{#3}	112.18(11)
O(7)-Cd(2)-N(9) ^{#3}	106.93(11)	$O(4)^{#2}$ -Cd(2)-N(9) ^{#3}	143.33(10)	O(6)-Cd(2)-N(9) ^{#3}	112.18(11)
Symmetry transformation	ns used to genera	te equivalent atoms:			
#1 x+1, y, z; #2 -x+2, -y+	+1, -z+2; #3 -x+3	3/2, y+1/2, -z+3/2			
2					
- Cn(1)-O(11)	1 878(3)	Cu(1)-O(2)	1 931(2)	$Cu(1)-O(4)^{\#1}$	2,008(3)
$Cu(1) - O(3)^{\#1}$	2.035(3)	$Cu(1) - O(12)^{\#2}$	2.338(3)	Cu(2)-O(11)	1 894(3)
Cu(2)-O(12)	1 934(2)	$Cu(2) - O(8)^{\#1}$	1.962(3)	$Cu(2) \cdot O(1)$	1.073(3)
$Cu(2) \cdot O(12)$	2.361(4)	Cu(3)-O(12)	1.925(2)	$Cu(3)-O(9)^{\#1}$	1.929(2)
Cu(3)-O(7)	2.013(2)	Cu(3)-O(6)	2.021(3)	O(11)-Cu(1)-O(2)	97.59(12)
O(11)-Cu(1)-O(4) ^{#1}	96.51(11)	O(2)-Cu(1)-O(4) ^{#1}	159.39(12)	$O(11)-Cu(1)-O(3)^{\#1}$	159.36(12)
$O(2)-Cu(1)-O(3)^{\#1}$	98.39(11)	$O(4)^{\#1}$ -Cu(1)-O(3)^{\#1}	64.85(11)	O(11)-Cu(1)-O(12) ^{#2}	99.37(12)
$O(2)-Cu(1)-O(12)^{\#2}$	103.52(11)	$O(4)^{\#1}$ -Cu(1)-O(12) ^{#2}	88.89(11)	$O(3)^{\#1}$ -Cu(1)-O(12) ^{#2}	89.49(11)
O(11)-Cu(2)-O(12)	172.87(12)	O(11)-Cu(2)-O(8) ^{#1}	87.01(12)	O(12)-Cu(2)-O(8) ^{#1}	91.61(11)
O(11)-Cu(2)-O(1)	92.21(11)	O(12)-Cu(2)-O(1)	88.58(11)	$O(8)^{\#1}$ -Cu(2)-O(1)	175.13(12)
$O(11)-Cu(2)-N(8)^{\#3}$		$O(12)-Cu(2)-N(8)^{\#3}$	87.67(12)	$O(8)^{\#1}$ -Cu(2)-N(8) ^{\#3}	93.09(13)
	99.39(14)	O(12) O(2) I(0)	<pre>0 / 0 / 0 = /</pre>		· - /
$O(1)-Cu(2)-N(8)^{#3}$	99.39(14) 91.78(13)	$O(12)-Cu(3)-O(9)^{\#1}$	99.41(11)	O(12)-Cu(3)-O(7)	97.77(11)

Table S1. Selected bond lengths for compounds 1–3.

O(7)-Cu(3)-O(6)	64.96(10)									
Symmetry transformations used to generate equivalent atoms:										
#1 x+1, y, z; #2 -x+1, -y+1, -z+1; #3 -x, -y+1, -z										
3										
Mn(1)-O(9) ^{#1}	2.104(3)	Mn(1)-O(9) ^{#2}	2.104(3)	Mn(1)-O(13) ^{#3}	2.138(3)					
Mn(1)-O(13) ^{#4}	2.138(3)	Mn(1)-O(1) ^{#5}	2.289(3)	Mn(1)-O(1)	2.289(3)					
Mn(2)-O(8) ^{#2}	2.122(3)	Mn(2)-O(14) ^{#4}	2.124(3)	Mn(2)-O(16)	2.168(4)					
Mn(2)-O(7)	2.192(3)	Mn(2)-O(1)	2.210(3)	Mn(3)-O(12) ^{#3}	2.088(3)					
Mn(3)-O(12)	2.088(3)	$Mn(3)-O(4)^{\#6}$	2.189(3)	Mn(3)-O(4) ^{#7}	2.189(3)					
Mn(3)-O(6) ^{#3}	2.296(3)	Mn(3)-O(6)	2.296(3)	Mn(4)-O(11)	2.113(3)					
Mn(4)-O(3) ^{#6}	2.163(3)	Mn(4)-O(17)	2.174(3)	Mn(4)-O(2)	2.223(3)					
Mn(4)-O(6)	2.229(3)	$O(9)^{\#1}-Mn(1)-O(9)^{\#2}$	180.0(2)	$O(9)^{\#1}-Mn(1)-O(13)^{\#3}$	92.59(13)					
$O(9)^{#2}-Mn(1)-O(13)^{#3}$	87.41(13)	$O(9)^{\#1}-Mn(1)-O(13)^{\#4}$	87.41(13)	$O(9)^{#2}-Mn(1)-O(13)^{#4}$	92.59(13)					
$O(13)^{#3}$ -Mn(1)-O(13) ^{#4}	180.000(1)	$O(9)^{\#1}-Mn(1)-O(1)^{\#5}$	85.08(12)	$O(9)^{#2}-Mn(1)-O(1)^{#5}$	94.92(12)					
$O(13)^{#3}$ -Mn(1)-O(1) ^{#5}	88.06(11)	$O(13)^{#4}-Mn(1)-O(1)^{#5}$	91.94(11)	$O(9)^{\#1}-Mn(1)-O(1)$	94.92(12)					
O(9) ^{#2} -Mn(1)-O(1)	85.08(12)	O(13) ^{#3} -Mn(1)-O(1)	91.94(11)	O(13) ^{#4} -Mn(1)-O(1)	88.06(11)					
O(1) ^{#5} -Mn(1)-O(1)	180.00(13)	$O(8)^{#2}$ -Mn(2)-O(14) ^{#4}	95.09(14)	O(8) ^{#2} -Mn(2)-O(16)	117.11(17)					
O(14) ^{#4} -Mn(2)-O(16)	81.19(14)	O(8) ^{#2} -Mn(2)-O(7)	91.40(12)	O(14) ^{#4} -Mn(2)-O(7)	164.17(13)					
O(16)-Mn(2)-O(7)	83.00(14)	O(8) ^{#2} -Mn(2)-O(1)	110.22(13)	O(14) ^{#4} -Mn(2)-O(1)	95.15(13)					
O(16)-Mn(2)-O(1)	132.68(15)	O(7)-Mn(2)-O(1)	96.12(11)	O(12) ^{#3} -Mn(3)-O(12)	180.00(10)					
$O(12)^{#3}$ -Mn(3)-O(4) ^{#6}	88.38(12)	O(12)-Mn(3)-O(4) ^{#6}	91.62(12)	$O(12)^{#3}$ -Mn(3)-O(4) ^{#7}	91.62(12)					
O(12)-Mn(3)-O(4) ^{#7}	88.38(12)	$O(4)^{\#6}$ -Mn(3)-O(4) $^{\#7}$	180.00(18)	$O(12)^{#3}$ -Mn(3)-O(6) ^{#3}	90.16(11)					
O(12)-Mn(3)-O(6) ^{#3}	89.84(11)	$O(4)^{\#6}-Mn(3)-O(6)^{\#3}$	103.65(12)	$O(4)^{\#7}$ -Mn(3)-O(6) $^{\#3}$	76.35(11)					
O(12) ^{#3} -Mn(3)-O(6)	89.84(11)	O(12)-Mn(3)-O(6)	90.16(11)	O(4) ^{#6} -Mn(3)-O(6)	76.35(11)					
O(4) ^{#7} -Mn(3)-O(6)	103.65(11)	O(6) ^{#3} -Mn(3)-O(6)	180.0	O(11)-Mn(4)-O(3) ^{#6}	95.68(13)					
O(11)-Mn(4)-O(17)	82.54(12)	O(3) ^{#6} -Mn(4)-O(17)	103.27(14)	O(11)-Mn(4)-O(2)	164.72(12)					
O(3) ^{#6} -Mn(4)-O(2)	90.41(11)	O(17)-Mn(4)-O(2)	82.43(12)	O(11)-Mn(4)-O(6)	92.36(12)					
O(3) ^{#6} -Mn(4)-O(6)	122.49(12)	O(17)-Mn(4)-O(6)	134.24(12)	O(2)-Mn(4)-O(6)	96.17(11)					

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2, -y+3/2, z+1/2; #2 -x, y, -z+1/2; #3 -x+1/2, -y+3/2, -z; #4 x, y, z+1; #5 -x+1/2, -y+3/2, -z+1; #6 -x+1, y, -z+1/2; #7 x-1/2, -y+3/2, z-1/2

-(3-amino-tetrazole-5-phenoxy)-isophthalic acid (H₂atpia).

Scheme S1. Synthesis of H₂atpia.

Fig. S2. IR Spectra of H₂atpia ligand.

Fig. S4. The PXRD data of 1 showing good agreement with the simulated one for as-synthesized sample.

2 Theta (deg)

Fig. S5. The PXRD data of 2 showing good agreement with the simulated one for as-synthesized sample.

Fig. S6. The PXRD data of 3 showing good agreement with the simulated one for as-synthesized sample.

