Supporting Information for

In-situ fabrication of Cu₂ZnSnS₄ (Se₄) nanoflake thin films on both rigid and flexible substrates

Xuezhen Zhai^{1,2}, Huimin Jia¹, Yange Zhang¹, Yan Lei¹, Jie Wei^{1,2}, Yuanhao Gao¹,

Junhao Chu², Weiwei He^{1,3}, Jun-jie Yin³, Zhi Zheng¹*

¹Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface Micro and Nano Materials, Xuchang University Henan 461000, China

²Key Laboratory of Polar Materials and Devices, Ministry of Education. Department

of Electronics, East China Normal University. 500 Dongchuan Road, Shanghai

200241, China

³Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration,

College Park, MD 20740, USA

Corresponding Authors: E-mail:<u>zhengzhi99999@gmail.com</u> zzheng@xcu.edu.cn

Figure. S1 XRD patterns of the CZTS nanocrystalline thin films samples prepared for18 h at 250 °C on stainless steel substrates. The thicknesses of CuSnZn alloy layers were 100 nm~400 nm.

Figure. S2 Raman spectra of the CZTS nanocrystalline thin films samples prepared for18 h at 250 °C on stainless steel substrates. The thicknesses of CuSnZn alloy layers are100 nm~400 nm.

Figure. S3 XRD patterns of the CZTSe nanocrystalline thin films samples prepared at 230~270°C for 18 h on stainless stell substrates. The thickness of CuSnZn alloy layer is 400nm.

Figure. S4 XRD patterns of the CZTSe nanocrystalline thin films samples prepared for 18h~24h at 250 °C on stainless stell substrates. The thickness of CuSnZn alloy layer is 400nm.

Figure. S5 Raman spectra of the CZTSe nanocrystalline thin films samples prepared for 18 h and 24 h at 250 °C on FTO substrates.

Figure S6 UV-vis-NIR absorption spectra of the CZTS thin film prepared at 230°C, 240°C and 250°C for 18 h (a) and the corresponding $(\alpha hv)^2 vs$. hv curve (b).

Figure S7 UV-vis-NIR absorption spectra of the CZTS thin film prepared at 250°C for 6 h, 18 h and 24 h (a) and the corresponding $(\alpha hv)^2 vs$. hv curves (b).

Figure S8 SEM images of the original and solvothermal treated alloy surface.