Supporting information for:

Utilising Hinged Ligands in MOF Synthesis: A Covalent Linking Strategy for Forming 3D MOFs

Campbell J. Coghlan,^a Christian J. Doonan^a and Christopher J. Sumby^a

^{a.} Centre for Advanced Nanomaterials, School of Chemistry and Physics, University of Adelaide, Adelaide, Australia

Contact details:

CJD: Tel: +61 8 8313 5770; *Fax:* +61 8 8313 4358; *E-mail: christian.doonan@adelaide.edu.au, CJS: Tel:* +61 8 8313 7406. *Fax.* +61 8 8313 4358. *E-mail: christopher.sumby@adelaide.edu.au*

Chart 1. Coordination modes of L (top) in (a) $[Cu_2(L)(H_2O)_2]$, (b) $[Zn_2(L)]$, (c) $[Cd_2(L)]$ (Pink) and (d) $[Co_2(L)(H_2O)_6]$. The dashed bonds in (d) indicate hydrogen bonds with the carboxylate oxygen atoms acting as acceptors.

Figure SI 1. TGA traces of $[Cu_2(L)(H_2O)_2]$ (Red), $[Zn_2(L)]$ (Black), $[Cd_2(L)]$ (Pink) and $[Co_2(L)(H_2O)_6]$ (Blue) for the as-synthesised samples (washed in methanol). The small percentage of weight loss in the range 50-100°C is attributed to solvent removal (MeOH in the pores) before decomposition when the coordinated water molecules and ligands are lost.

Figure SI 2. PXRD patterns for $[Cu_2(L)(H_2O)_2]$. Simulated pattern (Blue), sample washed in DMF and MeOH (Red), and activated sample (Green).

Figure SI 3. PXRD patterns for $[Zn_2(L)]$. Simulated pattern (Blue), sample washed in DMF and MeOH (Red), and activated sample (Green).

Figure SI 4. PXRD patterns for $[Cd_2(L)]$. Simulated pattern (Blue), sample washed in DMF and MeOH (Red), and activated sample (Green).

Figure SI 5. PXRD patterns for $[Co_2(L)(H_2O)_6]$. Simulated pattern (Blue), sample washed in DMF and MeOH (Red), and activated sample (Green).

Figure SI 6. CO₂ and N₂ isotherms at 293 K for (a) $[Cu_2(L)(H_2O)_2]$, (b) $[Zn_2(L)]$, (c) $[Cd_2(L)]$ and (d) $[Co_2(L)(H_2O)_6]$.

Figure SI 7. (a) 77 K N₂ adsorption isotherms for $[Cu_2(L)(H_2O)_2]$, $[Zn_2(L)]$, $[Cd_2(L)]$ and $[Co_2(L)(H_2O)_6]$. (b) Enlargements of the low pressure region of the 77 K N₂ adsorption isotherms.

Figure SI 8. Pore size distribution calculated from the 77 K N₂ adsorption isotherms for $[Cu_2(L)(H_2O)_2]$, $[Zn_2(L)]$, $[Cd_2(L)]$ and $[Co_2(L)(H_2O)_6]$. The green trace shows the pore size distribution for a sample of $[Zn_2(L)]$ that had been soaked in water and reactivated from methanol (see Figure 5 in the manuscript for PXRD data.