Electronic Supplementary Information (ESI)

Structural diversity of 5-methylnicotinate coordination assemblies regulated by metal-ligating tendency and metal-dependent anion effect

Cheng-Peng Li, Jing Chen, Peng-Wen Liu, and Miao Du*

College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Tianjin Normal

University, Tianjin 300387, P. R. China.

* To whom correspondence should be addressed. E-mail: dumiao@public.tpt.tj.cn.

CrystEngComm

(a)

(b)

(c)

(e)

(f)

(h)

Fig. S1 Powder X-ray diffraction (PXRD) patterns for complexes 1–9 (a–i).

Fig. S2 View of the self-interpenetrating pattern in 2.

Fig. S3 Topological view of the noz network for 2 with $[Ni_2(H_2O)(COO)_2]$ units as the nodes.

Fig. S4 Topological view the (3,5)-connected $(4.6^2)(4.6^7.8^2)$ network for **9**.

(b)

(c)

(e)

(f)

(h)

(i)

Fig. S4 TG-DTA curves for complexes 1–9.

Fig. S6 Solid-state emission spectra for HL-CH₃ ligand and complexes 4 and 5.

	1		
Ni1–O4	2.0343(13)	Ni1–O5	2.0787(14)
Ni1–N1	2.1101(17)	Ni2–O1A	2.0126(13)
Ni2–N2	2.0852(16)	Ni2–O6	2.1035(14)
04-Ni1-05	91.10(6)	O4-Ni1-N1	89.19(6)
O5-Ni1-N1	90.49(6)	O1A-Ni2-N2	90.04(6)
01A-Ni2-O6	92.03(6)	N2-Ni2-O6	88.64(6)
	2		
Ni1–O3A	2.047(2)	Ni1–N2	2.087(2)
Ni1–O8	2.088(2)	Ni1–N1	2.100(3)
Ni1–O6B	2.113(2)	Ni1–O9	2.134(2)
Ni2–O4A	2.055(2)	Ni2–O7	2.067(2)
Ni2–N4	2.096(3)	Ni2–N3A	2.097(3)
Ni209	2.103(2)	Ni2–O2C	2.114(2)
O3A-Ni1-N2	93.76(9)	O3A-Ni1-O8	97.30(8)
N2-Ni1-O8	84.31(9)	O3A-Ni1-N1	90.55(9)
N2-Ni1-N1	89.75(10)	08-Ni1-N1	170.43(9)
O3A-Ni1-O6B	174.84(9)	N2-Ni1-O6B	91.39(9)
08-Ni1-O6B	82.92(9)	N1-Ni1-O6B	89.75(9)
O3A-Ni1-O9	86.15(8)	N2-Ni1-O9	175.28(9)
08-Ni1-09	91.02(8)	N1-Ni1-O9	94.97(9)
O6B-Ni1-O9	88.69(8)	O4A-Ni2-O7	96.39(8)
O4A-Ni2-N4	173.83(9)	07-Ni2-N4	89.25(9)
O4A-Ni2-N3A	85.62(9)	O7-Ni2-N3A	92.51(9)
N4–Ni2–N3A	91.66(10)	O4A-Ni2-O9	89.11(8)

Table S1 Selective bond lengths (Å) and angles (°) for complexes 1–9

O7-Ni2-O9	88.59(8)	N4-Ni2-O9	93.53(9)
N3A-Ni2-O9	174.71(9)	O4A-Ni2-O2C	83.15(8)
O7–Ni2–O2C	177.75(8)	N4-Ni2-O2C	91.30(9)
N3A-Ni2-O2C	89.65(9)	O9-Ni2-O2C	89.20(8)
	3		
Ni1–O1	1.9724(18)	Ni1–Cl1	2.2326(8)
Ni1–O1A	1.9724(18)	Ni1-Cl1A	2.2326(8)
01-Ni1-O1A	88.62(11)	O1–Ni1–Cl1A	116.47(7)
O1A-Ni1-Cl1A	112.38(6)	O1-Ni1-Cl1	112.38(6)
O1A-Ni1-Cl1	116.47(7)	Cl1A-Ni1-Cl1	109.46(5)
	4		
Cd1O8	2.276(7)	Cd1–O5	2.282(6)
Cd1–O6	2.298(6)	Cd1–N2	2.308(8)
Cd1–N1	2.309(8)	Cd1–O7	2.316(6)
Cd2–O11	2.230(7)	Cd209	2.251(6)
Cd2010	2.268(7)	Cd2–O4A	2.275(6)
Cd2–O2	2.275(6)	Cd201	2.671(1)
Cd2–O3A	2.655(1)		
O8Cd1O5	90.8(2)	O8-Cd1-O6	175.92(19)
O5–Cd1–O6	90.5(2)	O8-Cd1-N2	87.3(2)
O5-Cd1-N2	92.3(2)	O6Cd1N2	88.7(2)
O8–Cd1–N1	92.5(2)	O5-Cd1-N1	87.8(2)
O6Cd1N1	91.5(2)	N2-Cd1-N1	179.78(19)
O8–Cd1–O7	89.2(2)	O5-Cd1-O7	176.4(2)
O6Cd1O7	89.8(2)	N2-Cd1-O7	91.3(2)
N1Cd1O7	88.6(2)	O11–Cd2–O9	87.3(2)
O11-Cd2-O10	173.7(3)	O9-Cd2-O10	87.4(2)

O11-Cd2-O4A	98.9(3)	O9–Cd2–O4A	135.5(2)
O10-Cd2-O4A	87.3(3)	O11–Cd2–O2	90.8(3)
O9–Cd2–O2	136.8(2)	O10-Cd2-O2	90.7(3)
O4A-Cd2-O2	87.4(3)	O3A-Cd2-O11	95.8(3)
O3A-Cd2-O9	83.5(2)	O3A-Cd2-O10	87.0(3)
O3A–Cd2–O4A	52.1(2)	O3A-Cd2-O2	139.5(2)
O3A-Cd2-O1	168.3(2)	O1Cd2O11	85.2(3)
O1-Cd2-O9	84.9(2)	O1Cd2O10	90.9(3)
O1-Cd2-O4A	139.3(2)	O1–Cd2–O2	51.9(2)
	_		
	5		
Cd101	2.237(2)	Cd1–N2A	2.311(2)
Cd1O5	2.320(2)	Cd1–N1B	2.343(3)
Cd1–O3	2.368(2)	Cd1–O4	2.417(2)
O1–Cd1–N2A	97.76(9)	O1-Cd1-O5	81.92(8)
N2A-Cd1-O5	93.71(8)	O1–Cd1–N1B	87.76(8)
N2A–Cd1–N1B	93.69(9)	O5–Cd1–N1B	168.02(8)
O1–Cd1–O3	115.68(9)	N2A-Cd1-O3	146.53(8)
O5–Cd1–O3	89.94(8)	N1B-Cd1-O3	89.08(8)
O1-Cd1-O4	163.90(8)	N2A-Cd1-O4	92.37(8)
O5-Cd1-O4	84.99(8)	N1B-Cd1-O4	104.10(8)
O3-Cd1-O4	54.80(7)		
	6		
C-1 01	1.0(41(10))	C.1 N2	2.02((2))

Cu1–O1	1.9641(19)	Cu1–N2	2.036(2)
Cu1–O5	2.395(3)	Cu2–O3	1.963(2)
Cu2–N1A	2.023(2)	Cu2–O6	2.400(2)
O1–Cu1–N2	89.78(9)	N2–Cu1–O5	91.80(10)

O1–Cu1–O5	92.39(9)	O3–Cu2–O6	95.21(8)
O3-Cu2-N1A	90.35(9)	N1A-Cu2-O6	88.80(9)
	7		
Co1–O3	2.0556(12)	Co1–O5	2.1188(13)
Co1–N1	2.1666(15)	Co2–O1A	2.0276(12)
Co2–N2	2.1397(15)	Co2–O6	2.1444(12)
O3–Co1–O5	90.22(5)	O3–Co1–N1	89.15(5)
O5-Co1-N1	89.58(6)	N2-Co2-O6	88.61(5)
O1A-Co2-O6	88.93(5)	O1A-Co2-N2	90.11(6)
	8		
Mn1–O2A	2.1669(11)	Mn1–O3	2.1963(11)
Mn1–N1	2.2762(13)		
O2A-Mn1-O3	88.57(4)	O2A-Mn1-N1	91.49(4)
O3-Mn1-N1	85.39(5)		
	9		
Pb1–O2	2.375(4)	Pb1–O3	2.423(4)
Pb1–N2	2.587(5)	Pb1–O1	2.710(6)
Pb1–N1A	2.734(6)	Pb1–O4	2.850(5)
Pb1–O4B	2.782(6)		
O2–Pb1–O3	88.34(15)	O2-Pb1-N2	81.43(18)
O3–Pb1–N2	90.15(17)	O2–Pb1–O1	51.37(15)
O3–Pb1–O1	139.70(14)	N2-Pb1-O1	83.50(17)
O2–Pb1–N1A	81.98(18)	O3–Pb1–N1A	79.09(17)
N2–Pb1–N1A	160.45(19)	O1–Pb1–N1A	94.13(18)
O4–Pb1–O2	132.04(18)	O4–Pb1–O3	48.53(15)

O4–Pb1–N2	79.24(19)	O4-Pb1-O1	161.13(18)
O4–Pb1–N1A	104.69(22)	O4–Pb1–O4B	82.70(21)
O4B-Pb1-O2	131.89(19)	O4B-Pb1-O3	130.94(18)
O4B-Pb1-N2	73.33(22)	O4B-Pb1-O1	85.08(18)
O4B-Pb1-N1A	125.93(25)		

Symmetry codes: A = x + 1/2, -y + 3/2, z + 1/2 for 1; A = -x + 1/2, y - 1/2, z; B = -x + 1, -y + 2, -z + 1; C = -x + 1, y - 1/2, -z + 1/2 for 2; A = -x + 1, y, -z + 3/2 for 3; A = x - 1, -y + 1/2, z - 1/2 for 4; A = x, y - 1, z; B = -x + 2, -y, -z + 1 for 5; A = -x + 2, y, -z + 1/2 for 6; A = x - 1/2, -y + 1/2, z - 1/2 for 7; A = x, -y + 3/2, z - 1/2 for 8; A = -x + 1, y - 1/2, -z + 3/2; B = -x, -y + 1, -z + 1 for 9.