Electronic Supplementary Information (ESI)

ROD-8, a rod MOF with pyrene-cored tetracarboxylate linker:

framework disorder, derived nets and selective gas adsorption

Ru-Jin Li,^a Mian Li,^a Xiao-Ping Zhou*,^a Seik Weng Ng,^b Michael O'Keeffe*^c and Dan Li*^a

 ^a Department of Chemistry and Research Institute for Biomedical and Advanced Materials, Shantou University, Guangdong 515063, P.R. China. E-mail: zhouxp@stu.edu.cn (X.P.Z.); dli@stu.edu.cn (D.L.)
 ^b Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
 ^c Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States. E-mail: mokeeffe@asu.edu (M.O'K.)

Table of Contents

Experimental Details	S2
Materials and instruments; Synthesis of ROD-8.	
Crystal Structure Description	S3-S5
Crystal structure determination; Table S1; Fig. S1.	
Topological Analysis	S6-S8
Topological information for lrk, lrl and lrj nets.	
Additional Characterization	S9-S10
Fig. S2, S3, S4. (IR, PXRD, TGA)	
Gas Adsorption Measurements and Analysis	S11-S15
Fig. S5, S6, S7; Table S2, S3, S4. (<i>Q</i> _{st} , DSL fitting, IAST)	

Experimental Details

Materials and instruments.

All reagents and solvents were purchased from commercial sources and used without further purification. The ligand 1,3,6,8-tetrakis(*p*-benzoic acid)pyrene (short for H₄TBAPy) was synthesized according to the literature method.^{S1} FT-IR spectra were measured using a Nicolet Avatar 360 FT-IR spectrophotometer. Thermogravimetric analysis (TGA) was carried out in a nitrogen stream using Q50 TGA (TA) thermal analysis equipment with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction patterns (PXRD) of the bulk samples were measured on a Bruker D8 Advance diffractometer (Cu K α , λ = 1.5418 Å) under room temperature. Low-pressure (up to 1 bar) gas adsorption isotherms (N₂, CO₂, CH₄) were measured on the Micrometrics ASAP 2020 Surface Area and Porosity Analyzer. In one typical run, about 150 mg methanol exchanged samples were activated at 180 °C for 15 hours by using the "outgas" function of the surface area analyzer before measurements.

Synthesis of [Cd₂(TBAPy)(H₂O)₂]·DMF·0.5dioxane (ROD-8).

A mixture of $Cd(NO_3)_2 \cdot 4H_2O$ (6.94 mg, 0.0225 mmol), H_4TBAPy (5.12 mg, 0.0075 mmol), and DMF/Dioxane/H₂O mixed solvent (2.0 mL, 2:1:1, v/v) were sealed in a Pyrex glass tube and heated in an oven at 120 °C for 72 hours. After cooling to room temperature at a rate of 5 °C/h, the yellow block-like crystals were obtained by filtration and washing with DMF for 3 times (2.0 ml each time, yield: 3.0 mg).

^{S1} K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw and M. J. Rosseinsky, J. Am. Chem. Soc., 2010, **132**, 4119.

Crystal Structure Description

Crystal structure determination.

A suitable crystal of the complex was mounted with glue at the end of a glass fiber. Data collection was performed on an Agilent Technologies Gemini A System (Cu K α , $\lambda = 1.54178$ Å) at room temperature (293 K). The data were processed using the software *CrysAlisPro.1*. The structure was solved by direct methods and refined by full-matrix least-squares refinements based on F^2 . Anisotropic thermal parameters were applied to all non-hydrogen atoms. The hydrogen atoms were generated geometrically. The crystallographic calculations were performed using the *SHELXL-97* programs.^{S2} The dioxane molecules in the channels of **ROD-8** are highly disordered, which are squeezed by using the program SQUEEZE/PLATON.^{S3} The void volume (excluding guest solvent molecules) in the crystal cell was calculated using the program *PLATON*.^{S3} Crystal data and structure refinement are summarized in Table S1.

^{S2} G. M. Sheldrick, Acta Crystallogr. A, 2007, 64, 112.

^{S3} A. Spek, J. Appl. Crystallogr., 2003, 36, 7.

	ROD-8
Formula	$C_{49}H_{37}Cd_2NO_{12}$
Mr.	1012.54
Crystal system	Monoclinic
Space group	$P2_{1}/c$
Temp. (K)	293.3
<i>a</i> (Å)	7.1510(1)
<i>b</i> (Å)	24.8988(4)
<i>c</i> (Å)	28.6097(4)
α (°)	90
β (°)	93.406(1)
γ (°)	90
$V(\text{\AA}^3)$	5085.00(13)
Ζ	4
$D_{\rm c}({\rm g\cdot cm}^{-3})$	1.323
no. of reflns	14688
no. of unique	8079
unique refl.(R_{int})	0.0481
GOF on F^2	1.060
$R_1[I \ge 2\sigma(I)]^a$	0.0523
$wR_2[I \ge 2\sigma(I)]^b$	0.1249
R_1 [all data]	0.0887
wR_2 [all data]	0.1429
$a \mathbf{D} = \mathbf{\Sigma} A \mathbf{E} \mathbf{E} \mathbf{\Sigma} \mathbf{\Sigma} \mathbf{E} \mathbf{b}$	$F_{\mu\nu} = \frac{F_{\mu\nu}}{F_{\mu\nu}} \frac{F_{\mu\nu}^2}{F_{\mu\nu}^2} \frac{F_{\mu\nu}^2}{F_{$

Table S1. Crystal data and structure refinements for ROD-8

^{*a*} $R_1 = \Sigma(||F_0| - |F_c||) / \Sigma |F_0|; {}^{b} w R_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$ CCDC No.: 984649

Fig. S1 Coordination environments of the metal (Cd1 and Cd2) (a) and ligand (b) in ROD-8.

Topological Analysis

Topological information^{S4} for lrk:

Point Symbol:⁸⁵ (3.14²)(3.8.9)₂(4².6.8².10)₂

TD10: 621

Systre file (.cgd) is given below:

CRYSTAL NAME "lrk; ROD-8" **GROUP** Cccm CELL 7.87476 1.91261 6.89075 90.0000 90.0000 90.0000 NODE 3 3 0.55596 0.37573 0.50000 NODE 7 4 0.26863 0.00014 0.17747 NODE 1 3 0.15318 0.33617 0.07247 EDGE 0.15318 0.33617 0.07247 0.05596 0.12427 -0.00000 EDGE 0.55596 0.37573 0.50000 0.44404 0.62427 0.50000 EDGE 0.26863 0.00014 0.17747 0.26863 -0.00014 0.32253 EDGE 0.26863 0.00014 0.17747 0.23137 -0.50014 0.17747 EDGE 0.26863 0.00014 0.17747 0.34682 0.16383 0.07247 EDGE 0.26863 0.00014 0.17747 0.23137 0.49986 0.17747 EDGE 0.15318 0.33617 0.07247 0.15318 0.33617 -0.07247 # EDGE CENTER 0.10457 0.23022 0.03624 # EDGE CENTER 0.50000 0.50000 0.50000 # EDGE CENTER 0.26863 -0.00000 0.25000 # EDGE CENTER 0.25000 -0.25000 0.17747 # EDGE CENTER 0.30773 0.08198 0.12497 # EDGE CENTER 0.25000 0.25000 0.17747 # EDGE CENTER 0.15318 0.33617 0.00000 END

 ^{S4} (a) O. Delgado-Friedrichs and M. O'Keeffe, *Acta Crystal. A*, 2003, **59**, 351. *Systre* is available at <u>http://www.gavrog.org/</u>. (b) M. O'Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi, *Acc. Chem. Res.*, 2008, **41**, 1782. *RCSR* (Reticular Chemistry Structure Resource) is available at <u>http://rcsr.anu.edu.au/</u>.
 ^{S5} V. A. Blatov, M. O'Keeffe and D. M. Proserpio, *CrystEngComm*, 2010, **12**, 44.

Topological information for Irl:

Point Symbol: (3.10.11)₂(3.12²)(4².6.10².12)₂

TD10: 713.6

Systre file (.cgd) is given below:

CRYSTAL NAME "lrl; ROD-8" **GROUP** Cccm CELL 1.72063 5.46508 9.16178 90.0000 90.0000 90.0000 NODE 5 3 0.32149 0.07219 0.35090 NODE 1 4 0.00000 0.20336 0.30457 NODE 7 3 0.00000 0.50000 0.05457 EDGE 0.00000 0.50000 0.05457 0.17851 0.57219 0.14910 EDGE 0.00000 0.20336 0.30457 -0.50000 0.29664 0.30457 EDGE 0.00000 0.20336 0.30457 -0.00000 0.20336 0.19543 EDGE 0.00000 0.50000 0.05457 0.00000 0.50000 -0.05457 EDGE 0.00000 0.20336 0.30457 0.32149 0.07219 0.35090 EDGE 0.32149 0.07219 0.35090 0.67851 -0.07219 0.35090 EDGE 0.00000 0.20336 0.30457 0.50000 0.29664 0.30457 # EDGE CENTER 0.08925 0.53610 0.10184 # EDGE CENTER -0.25000 0.25000 0.30457 # EDGE CENTER 0.00000 0.20336 0.25000 # EDGE CENTER 0.00000 0.50000 0.00000 # EDGE CENTER 0.16075 0.13778 0.32774 # EDGE CENTER 0.50000 0.00000 0.35090 # EDGE CENTER 0.25000 0.25000 0.30457 END -----

Topological information for lrj:

Point Symbol: (4.8.10)(4².6.8².10)

TD10: 830

Systre file (.cgd) is given below:

CRYSTAL

```
NAME "lrj; basic net of lrk and lrl"
  GROUP Cccm
  CELL 5.23705 1.68608 6.17560 90.0000 90.0000 90.0000
  NODE 2 3 0.07317 0.19051 0.41904
  NODE 1 4 0.30135 0.00000 0.16904
  EDGE 0.30135 0.00000 0.16904
                                 0.19865 -0.50000 0.16904
  EDGE 0.07317 0.19051 0.41904
                                 -0.07317 -0.19051 0.41904
  EDGE 0.30135 0.00000 0.16904
                                 0.30135 -0.00000 0.33096
  EDGE 0.07317 0.19051 0.41904
                                 0.07317 0.19051 0.58096
  EDGE 0.30135 0.00000 0.16904
                                 0.42683 -0.30949 0.08096
  EDGE 0.30135 0.00000 0.16904
                                 0.19865 0.50000 0.16904
# EDGE CENTER 0.25000 -0.25000 0.16904
# EDGE CENTER 0.00000 -0.00000 0.41904
# EDGE CENTER 0.30135 -0.00000 0.25000
# EDGE CENTER 0.07317 0.19051 0.50000
# EDGE CENTER 0.36409 -0.15474 0.12500
# EDGE CENTER 0.25000 0.25000 0.16904
END
  _____
```

Additional Characterization

Fig. S2 IR spectra of the as-synthesis ROD-8 (black) and activated sample (red) by heating under vacuum at 180 °C (before heating, ROD-8 was immersed in MeOH for a week).

Fig. S3 TGA plots of the as-synthesis ROD-8 (black) and activated sample (red) by heating

under vacuum at 180 °C.

Fig. S4 PXRD patterns of the as-synthesis (red) and simulated ROD-8 (black).

Gas Adsorption Measurements and Analysis

Calculation of isosteric heat of adsorption

The isosteric heat of adsorption (Q_{st}) for the CO₂ adsorption of ROD-8 is calculated via the Clausius–Clapeyron equation expatiated below. The adsorption isotherms used for the calculations are the ones measured at 273 K, 298 K and 303 K given in Fig. 2b in the main text. The results are given in Fig. 3a in the main text.

The isosteric heat of adsorption (Q_{st}) can be calculated via the Clausius–Clapeyron equation:

$$Q_{st} = -R \left[\frac{\partial \ln p}{\partial (1/T)} \right]_N \quad (E1)$$

where p is the pressure, T is the temperature, N is the amount adsorbed, R is the universal gas constant. Integrating equation (E1) gives:

$$(\ln p)_N = -\left(\frac{Q_{st}}{R}\right) \left(\frac{1}{T}\right) + C \quad (E2)$$

where *C* is a constant. Here an isotherm is first fitted to a high-order polynomial equation to obtain an expression for *N* as a function of *p*. Then the values of *p* at a given *N* for each *T* can be interpolated from the fitted equation. At each given *N*, the isostere plot of $(\ln p)_N$ as a function of (1/T), which is obtained from linear regression, matches with the form of equation (E2), and therefore the Q_{st} values can be computed from the slopes of the isostere plot.

Fitting of adsorption isotherms.

Before further calculation and analysis of the adsorption and separation properties, the adsorption isotherms must be fitted properly to adsorption models of physical meanings. Here the measured experimental data on pure component isotherms for CO_2 , N_2 and CH_4 at 273K and 298K are fitted using dual-site Langmuir (DSL) model:

DSL:
$$q = \frac{q_{sat,A}b_Ap}{1+b_Ap} + \frac{q_{sat,B}b_Bp}{1+b_Bp}$$
 (E3)

where q is the adsorption quantity, q_{sat} is the saturate adsorption quantity, b is the coefficients the subscripts A and B indicate the parameters for the adsorption sites A and B, respectively. The fitting results are given in Fig. S5-S6 and Table S2-S4.

Fig. S5 DSL models fitting for the CO_2 adsorption isotherms of ROD-8. Dots are experimental data; lines are fitting curves.

Table S2 Dual site Langinum fitting parameters for CO ₂ adsorption for KOD-8			
	273 K	298 K	303 K
$q_{\mathrm{sat,A}}$	44.52988	45.48613	60.74641
b_{A}	1.12654	0.78095	0.49447
$q_{ m sat,B}$	44.52988	45.48613	60.74641
$b_{ m B}$	1.12654	0.78095	0.49447
R ²	0.99988	0.99993	0.99996

Table S2 Dual site Langmuir fitting parameters for CO₂ adsorption for ROD-8

Fig. S6 DSL models fitting for the CO_2 adsorption isotherms of ROD-8. Dots are experimental data; lines are fitting curves.

Table 55 Dual site Langinum inting parameters for C114 adsorption for ROD-6			
	273 K	298 K	303 K
$q_{\mathrm{sat,A}}$	43.52768	35.33205	31.08915
b_{A}	0.48373	0.32192	0.33951
$q_{ m sat,B}$	43.52768	35.33205	31.08915
$b_{ m B}$	0.48373	0.32192	0.33951
\mathbb{R}^2	0.99999	0.99999	0.99999

Table S3 Dual site Langmuir fitting parameters for CH₄ adsorption for ROD-8

For ROD-8, the adsorption isotherms for N_2 at 273K and 298K can also be fitted to the DSL model, fitting parameters are shown in Table. S4.

Table S4 Dual site Langmuir fitting	parameters for N ₂ adsorption for ROD-8
-------------------------------------	--

ŭ	U 1	- 1
	273K	298K
$q_{ m sat,A}$	6.48906	5.6747
b_{A}	0.40749	0.35044
$q_{ m sat,B}$	6.48906	5.6747
$b_{ m B}$	0.40749	0.35044
R ²	0.9997	0.99879

Calculation of CO₂/N₂, CO₂/CH₄ and CH₄/N₂ adsorption selectivity.

The Ideal Adsorbed Solution Theory $(IAST)^{S6}$ is used to estimate the composition of the adsorbed phase from pure component isotherm data and predict the selectivity of the binary mixture CO_2/N_2 , CO_2/CH_4 and CH_4/N_2 . For the IAST, the following equation is proposed:

$$\int_{0}^{p_a} \frac{q_a}{p} dp = \int_{0}^{p_b} \frac{q_b}{p} dp \quad (E4)$$

where p_a and p_b are the pressure of component a and b at the same spreading pressure and the same temperature as that of the mixture respectively. And for the ideal binary gas mixture, according to the Raoult's law, there are the following two equations:

$$y p_t = x p_a$$
 (E5)
(1-y) $p_t = (1-x) p_b$ (E6)

where p_t is the total gas pressure, y and x are the molar fraction of a in bulk phase and molar fraction of a in the adsorbed phase respectively. Combining equations (E3), (E4), (E5) and (E6), the molar fraction of a in the adsorbed phase can be obtained from the following equation:

$$\frac{yp_t}{\int_{0}^{x} \frac{q_a}{p} dp} = \frac{\int_{0}^{(1-y)p_t} \frac{q_b}{p} dp}{\int_{0}^{1-x} \frac{q_b}{p} dp} \quad (E7)$$

Before using equation (E7), the adsorption isotherms of the pure components must be fitted properly by the Langmuir adsorption models or others. Then one can get the Langmuir fitting parameters of adsorption equilibrium of pure a and pure b. Given the total pressure p_t and the molar fraction of a in bulk phase y, there is only one unknown variable quantity x (absorbed phase) in equation (E7), which can be solved by *MATLAB* software.

After calculating the molar faction of a in adsorbed phase x, one can calculate the adsorption selectivity, which is defined as:

$$S = \frac{\frac{x_a}{y_a}}{\frac{x_b}{y_b}} \quad (E8)$$

where x_a , y_b are the molar fraction of a in the adsorbed phase and molar fraction of a in bulk

^{S6} K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, *Chem. Rev.*, 2012, **112**, 724.

phase respectively, x_b , y_b are the molar fraction of b in the adsorbed phase and molar fraction of j in bulk phase respectively. The results are given in Fig. 3 (298 K) in the main text and Fig. S7 (273 K).

Fig. S7 The predicted IAST selectivity (dots) of (a) CO_2/N_2 , (b) CO_2/CH_4 and (c) CH_4/N_2 at 273 K for ROD-8a. In all calculations, the DSL model is used. y denotes the molar fraction of the former (i.e. CO_2 in (a) and (b) and CH_4 in (c)) in the bulk phase.